Cell Stress and Chaperones

, 16:549 | Cite as

Multiphoton ANS fluorescence microscopy as an in vivo sensor for protein misfolding stress

  • Kevin C. Hadley
  • Michael J. Borrelli
  • James R. Lepock
  • JoAnne McLaurin
  • Sidney E. Croul
  • Abhijit Guha
  • Avijit Chakrabartty
Original Paper

Abstract

The inability of cells to maintain protein folding homeostasis is implicated in the development of neurodegenerative diseases, malignant transformation, and aging. We find that multiphoton fluorescence imaging of 1-anilinonaphthalene-8-sulfonate (ANS) can be used to assess cellular responses to protein misfolding stresses. ANS is relatively nontoxic and enters live cells and cells or tissues fixed in formalin. In an animal model of Alzheimer’s disease, ANS fluorescence imaging of brain tissue sections reveals the binding of ANS to fibrillar deposits of amyloid peptide (Aβ) in amyloid plaques and in cerebrovascular amyloid. ANS imaging also highlights non-amyloid deposits of glial fibrillary acidic protein in brain tumors. Cultured cells under normal growth conditions possess a number of ANS-binding structures. High levels of ANS fluorescence are associated with the endoplasmic reticulum (ER), Golgi, and lysosomes—regions of protein folding and degradation. Nuclei are virtually devoid of ANS binding sites. Additional ANS binding is triggered by hyperthermia, thermal lesioning, proteasome inhibition, and induction of ER stress. We also use multiphoton imaging of ANS binding to follow the in vivo recovery of cells from protein-damaging insults over time. We find that ANS fluorescence tracks with the binding of the molecular chaperone Hsp70 in compartments where Hsp70 is present. ANS highlights the sensitivity of specific cellular targets, including the nucleus and particularly the nucleolus, to thermal stress and proteasome inhibition. Multiphoton imaging of ANS binding should be a useful probe for monitoring protein misfolding stress in cells.

Keywords

Protein homeostasis Intracellular protein folding Chaperones Hsp70 

Supplementary material

12192_2011_266_MOESM1_ESM.pdf (4 mb)
ESM 1Figures (PDF 4,145 kb)

References

  1. Alastalo T, Hellesuo M, Sandqvist A, Hietakangas V, Kallio M, Sistonen L (2003) Formation of nuclear stress granules involves HSF2 and coincides with the nucleolar localization of Hsp70. J Cell Sci 116:3557–3570PubMedCrossRefGoogle Scholar
  2. Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319:916–919PubMedCrossRefGoogle Scholar
  3. Bański P, Kodiha M, Stochaj U (2010a) Chaperones and multitasking proteins in the nucleolus: networking together for survival? Trends Biochem Sci 35:361–367PubMedCrossRefGoogle Scholar
  4. Bański P, Mahboubi H, Kodiha M, Shrivastava S, Kanagaratham C, Stochaj U (2010b) Nucleolar targeting of the chaperone Hsc70 is regulated by stress, cell signaling, and a composite targeting signal which is controlled by autoinhibition. J Biol Chem 285:21858–21867PubMedCrossRefGoogle Scholar
  5. Barrow CJ, Zagorski MG (1991) Solution structures of beta peptide and its constituent fragments: relation to amyloid deposition. Science 253:179–182PubMedCrossRefGoogle Scholar
  6. Borrelli MJ, Bernock LJ, Landry J, Spitz DR, Weber LA, Hickey E, Freeman ML, Corry PM (2002) Stress protection by a fluorescent Hsp27 chimera that is independent of nuclear translocation or multimeric dissociation. Cell Stress Chaperones 7:281–296PubMedCrossRefGoogle Scholar
  7. Brodsky JL, McCracken AA (1999) ER protein quality control and proteasome-mediated protein degradation. Semin Cell Dev Biol 10:507–513PubMedCrossRefGoogle Scholar
  8. Cheung JC, Deber CM (2008) Misfolding of the cystic fibrosis transmembrane conductance regulator and disease. Biochemistry 47:1465–1473PubMedCrossRefGoogle Scholar
  9. Chishti MA, Yang DS, Janus C, Phinney AL, Horne P, Pearson J, Strome R, Zuker N, Loukides J, French J, Turner S, Lozza G, Grilli M, Kunicki S, Morissette C, Paquette J, Gervais F, Bergeron C, Fraser PE, Carlson GA, George-Hyslop PS, Westaway D (2001) Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem 276:21562–21570PubMedCrossRefGoogle Scholar
  10. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366PubMedCrossRefGoogle Scholar
  11. Choquet CG, Patel GB, Beveridge TJ, Sprott GD (1992) Formation of unilamellar liposomes from total polar lipid extracts of methanogens. Appl Environ Microbiol 58:2894–2900PubMedGoogle Scholar
  12. Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A (2006) Opposing activities protect against age-onset proteotoxicity. Science 313:1604–1610PubMedCrossRefGoogle Scholar
  13. Delom F, Emadali A, Cocolakis E, Lebrun J, Nantel A, Chevet E (2007) Calnexin-dependent regulation of tunicamycin-induced apoptosis in breast carcinoma MCF-7 cells. Cell Death Differ 14:586–596PubMedCrossRefGoogle Scholar
  14. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76PubMedCrossRefGoogle Scholar
  15. Dyckman J, Weltman JK (1970) A morphological analysis of binding of a hydrophobic probe to cells. J Cell Biol 45:192–197PubMedCrossRefGoogle Scholar
  16. Finegold L, Baker EA, Epel D (1974) Sea urchin egg fertilization studied with a fluorescent probe (ANS). Exp Cell Res 86:248–252PubMedCrossRefGoogle Scholar
  17. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509PubMedGoogle Scholar
  18. Fourie AM, Sambrook JF, Gething MJ (1994) Common and divergent peptide binding specificities of Hsp70 molecular chaperones. J Biol Chem 269:30470–30478PubMedGoogle Scholar
  19. Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973PubMedCrossRefGoogle Scholar
  20. Gregersen N, Bross P, Vang S, Christensen JH (2006) Protein misfolding and human disease. Annu Rev Genomics Hum Genet 7:103–124PubMedCrossRefGoogle Scholar
  21. Hawkes CA, McLaurin J (2009) Selective targeting of perivascular macrophages for clearance of beta-amyloid in cerebral amyloid angiopathy. Proc Natl Acad Sci USA 106:1261–1266PubMedCrossRefGoogle Scholar
  22. Hazel DL, Newland AC, Kelsey SM (1999) Malignancy: granulocyte colony stimulating factor increases the efficacy of conventional amphotericin in the treatment of presumed deep-seated fungal infection in neutropenic patients following intensive chemotherapy or bone marrow transplantation for haematological malignancies. Hematology 4:305–311PubMedGoogle Scholar
  23. Hiss DC, Gabriels GA, Folb PI (2007) Combination of tunicamycin with anticancer drugs synergistically enhances their toxicity in multidrug-resistant human ovarian cystadenocarcinoma cells. Cancer Cell Int 7:5PubMedCrossRefGoogle Scholar
  24. Kelényi G (1967) Thioflavin S fluorescent and Congo red anisotropic stainings in the histologic demonstration of amyloid. Acta Neuropathol 7:336–348PubMedCrossRefGoogle Scholar
  25. Klibanov SA, O’Hagan HM, Ljungman M (2001) Accumulation of soluble and nucleolar-associated p53 proteins following cellular stress. J Cell Sci 114:1867–1873PubMedGoogle Scholar
  26. König K (2000) Multiphoton microscopy in life sciences. J Microsc 200:83–104PubMedCrossRefGoogle Scholar
  27. Kotliarova S, Jana NR, Sakamoto N, Kurosawa M, Miyazaki H, Nekooki M, Doi H, Machida Y, Wong HK, Suzuki T, Uchikawa C, Kotliarov Y, Uchida K, Nagao Y, Nagaoka U, Tamaoka A, Oyanagi K, Oyama F, Nukina N (2005) Decreased expression of hypothalamic neuropeptides in Huntington disease transgenic mice with expanded polyglutamine-EGFP fluorescent aggregates. J Neurochem 93:641–653PubMedCrossRefGoogle Scholar
  28. Lin JH, Walter P, Yen TSB (2008) Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol 3:399–425PubMedCrossRefGoogle Scholar
  29. Mahalingam D, Swords R, Carew JS, Nawrocki ST, Bhalla K, Giles FJ (2009) Targeting Hsp90 for cancer therapy. Br J Cancer 100:1523–1529PubMedCrossRefGoogle Scholar
  30. Mattsson K, Pokrovskaja K, Kiss C, Klein G, Szekely L (2001) Proteins associated with the promyelocytic leukemia gene product (PML)-containing nuclear body move to the nucleolus upon inhibition of proteasome-dependent protein degradation. Proc Natl Acad Sci USA 98:1012–1017PubMedCrossRefGoogle Scholar
  31. Moenner M, Pluquet O, Bouchecareilh M, Chevet E (2007) Integrated endoplasmic reticulum stress responses in cancer. Cancer Res 67:10631–10634PubMedCrossRefGoogle Scholar
  32. Nollen EA, Salomons FA, Brunsting JF, Want JJ, Sibon OC, Kampinga HH (2001) Dynamic changes in the localization of thermally unfolded nuclear proteins associated with chaperone-dependent protection. Proc Natl Acad Sci USA 98:12038–12043PubMedCrossRefGoogle Scholar
  33. Nonaka T, Hasegawa M (2009) A cellular model to monitor proteasome dysfunction by alpha-synuclein. Biochemistry 48:8014–8022PubMedCrossRefGoogle Scholar
  34. Picard D, Suslova E, Briand P (2006) 2-Color photobleaching experiments reveal distinct intracellular dynamics of two components of the Hsp90 complex. Exp Cell Res 312:3949–3958PubMedCrossRefGoogle Scholar
  35. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991PubMedCrossRefGoogle Scholar
  36. Semisotnov GV, Rodionova NA, Razgulyaev OI, Uversky VN, Gripas’ AF, Gilmanshin RI (1991) Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31:119–128PubMedCrossRefGoogle Scholar
  37. Sherman M, Multhoff G (2007) Heat shock proteins in cancer. Ann NY Acad Sci 1113:192–201PubMedCrossRefGoogle Scholar
  38. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112PubMedCrossRefGoogle Scholar
  39. Slavík J (1982) Anilinonaphthalene sulfonate as a probe of membrane composition and function. Biochim Biophys Acta 694:1–25PubMedGoogle Scholar
  40. Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic Hsp90 complex in cancer. Nat Rev Cancer 10:537–549PubMedCrossRefGoogle Scholar
  41. Tupling AR, Gramolini AO, Duhamel TA, Kondo H, Asahi M, Tsuchiya SC, Borrelli MJ, Lepock JR, Otsu K, Hori M, MacLennan DH, Green HJ (2004) Hsp70 binds to the fast-twitch skeletal muscle sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA1a) and prevents thermal inactivation. J Biol Chem 279:52382–52389PubMedCrossRefGoogle Scholar
  42. Unni VK, Weissman TA, Rockenstein E, Masliah E, McLean PJ, Hyman BT (2010) In vivo imaging of alpha-synuclein in mouse cortex demonstrates stable expression and differential subcellular compartment mobility. PLoS ONE 5:e10589PubMedCrossRefGoogle Scholar
  43. Welch WJ, Feramisco JR (1984) Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat-shocked mammalian cells. J Biol Chem 259:4501–4513PubMedGoogle Scholar
  44. Wippold FJ, Perry A, Lennerz J (2006) Neuropathology for the neuroradiologist: Rosenthal fibers. AJNR Am J Neuroradiol 27:958–961PubMedGoogle Scholar
  45. Witz G, Sivak A, van Duuren BL (1973) Interaction of a hydrophobic fluorescent probe with mouse embryo fibroblasts. Exp Cell Res 81:139–142PubMedCrossRefGoogle Scholar
  46. Wójcik C, DeMartino GN (2003) Intracellular localization of proteasomes. Int J Biochem Cell Biol 35:579–589PubMedCrossRefGoogle Scholar
  47. Wu B, Hunt C, Morimoto R (1985) Structure and expression of the human gene encoding major heat shock protein Hsp70. Mol Cell Biol 5:330–341PubMedGoogle Scholar
  48. Zeng X, Bhasin S, Wu X, Lee J, Maffi S, Nichols CJ, Lee KJ, Taylor JP, Greene LE, Eisenberg E (2004) Hsp70 dynamics in vivo: effect of heat shock and protein aggregation. J Cell Sci 117:4991–5000PubMedCrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2011

Authors and Affiliations

  • Kevin C. Hadley
    • 1
  • Michael J. Borrelli
    • 2
  • James R. Lepock
    • 1
  • JoAnne McLaurin
    • 3
  • Sidney E. Croul
    • 4
  • Abhijit Guha
    • 5
  • Avijit Chakrabartty
    • 6
    • 7
    • 8
    • 9
  1. 1.Department of Medical BiophysicsUniversity of Toronto. Ontario Cancer InstituteTorontoCanada
  2. 2.Department of RadiologyUniversity of Arkansas for Medical SciencesLittle RockUSA
  3. 3.Department of Laboratory Medicine and Pathobiology, Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoCanada
  4. 4.Department of Laboratory Medicine and PathobiologyUniversity of Toronto, UHN Path 11E426 Toronto General HospitalTorontoCanada
  5. 5.Arthur and Sonia Labatt Brain Tumour CentreHospital for Sick Children’s Research InstituteTorontoCanada
  6. 6.Campbell Family Institute for Cancer Research, Ontario Cancer InstituteUniversity Health NetworkTorontoCanada
  7. 7.Department of Medical BiophysicsUniversity of TorontoTorontoCanada
  8. 8.Department of BiochemistryUniversity of TorontoTorontoCanada
  9. 9.TorontoCanada

Personalised recommendations