Cell Stress and Chaperones

, Volume 16, Issue 4, pp 353–367 | Cite as

Versatile TPR domains accommodate different modes of target protein recognition and function

  • Rudi Kenneth Allan
  • Thomas RatajczakEmail author
Mini Review


The tetratricopeptide repeat (TPR) motif is one of many repeat motifs that form structural domains in proteins that can act as interaction scaffolds in the formation of multi-protein complexes involved in numerous cellular processes such as transcription, the cell cycle, protein translocation, protein degradation and host defence against invading pathogens. The crystal structures of many TPR domain-containing proteins have been determined, showing TPR motifs as two anti-parallel α-helices packed in tandem arrays to form a structure with an amphipathic groove which can bind a target peptide. This is however not the only mode of target recognition by TPR domains, with short amino acid insertions and alternative TPR motif conformations also shown to contribute to protein interactions, highlighting diversity in TPR domains and the versatility of this structure in mediating biological events.


Tetratricopeptide repeat domains Hsp70/Hsp90 chaperone machinery Steroid receptors p67phox PEX5 



Research in the authors’ laboratory is supported by the National Health & Medical Research Council of Australia and the National Breast Cancer Foundation. The authors are also grateful to Carmel Cluning and Danny Mok for assistance in preparing the manuscript.


  1. Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 353:668–670PubMedCrossRefGoogle Scholar
  2. Ahmed S, Prigmore E, Govind S, Veryard C, Kozma R, Wientjes FB, Segal AW, Lim L (1998) Cryptic Rac-binding and p21Cdc42HS/Rac-activated kinase phosphorylation sites of NADPH oxidase component p67phox. J Biol Chem 273:15693–15701PubMedCrossRefGoogle Scholar
  3. Allan RK, Mok D, Ward BK, Ratajczak T (2006) Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization. J Biol Chem 281:7161–7171PubMedCrossRefGoogle Scholar
  4. Andrade MA, Perez-Iratxeta C, Ponting CP (2001) Protein repeats: structures, functions, and evolution. J Struct Biol 134:117–131PubMedCrossRefGoogle Scholar
  5. Angeletti PC, Walker D, Panganiban AT (2002) Small glutamine-rich protein/viral protein U-binding protein is a novel cochaperone that affects heat shock protein 70 activity. Cell Stress Chaperones 7:258–268PubMedCrossRefGoogle Scholar
  6. Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin L-Y, Patterson C (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19:4535–4545PubMedGoogle Scholar
  7. Banerjee A, Periyasamy S, Wolf IM, Hinds TD, Yong W, Shou W, Sanchez ER (2008) Control of glucocorticoid and progesterone receptor subcellular localization by the ligand-binding domain is mediated by distinct interactions with tetratricopeptide repeat proteins. Biochemistry 47:10471–10480PubMedCrossRefGoogle Scholar
  8. Barent RL, Nair SC, Carr DC, Ruan Y, Rimerman RA, Fulton J, Zhang Y, Smith DF (1998) Analysis of FKBP51/FKBP52 chimeras and mutants for Hsp90 binding and association with progesterone receptor complexes. Mol Endocrinol 12:342–354PubMedCrossRefGoogle Scholar
  9. Barford D (1996) Molecular mechanisms of the protein serine/threonine phosphatases. Trends Biochem Sci 21:407–412PubMedCrossRefGoogle Scholar
  10. Bimston D, Song J, Winchester D, Takayama S, Reed JC, Morimoto RI (1998) BAG-1, a negative regulator of Hsp70 chaperone activity, uncouples nucleotide hydrolysis from substrate release. EMBO J 17:6871–6878PubMedCrossRefGoogle Scholar
  11. Bouwmeester T, Bauch A, Ruffner H, Angrand P-O, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon A-M, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin A-C, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B, Superti-Furga G (2004) A physical and functional map of the human TNF-a/NF-kB signal transduction pathway. Nat Cell Biol 6:97–105PubMedCrossRefGoogle Scholar
  12. Brocard C, Hartig A (2006) Peroxisome targeting signal 1: is it really a simple tripeptide? Biochim Biophys Acta, Mol Cell Res 1763:1565–1573PubMedCrossRefGoogle Scholar
  13. Buchanan G, Ricciardelli C, Harris JM, Prescott J, Yu ZC-L, Jia L, Butler LM, Marshall VR, Scher HI, Gerald WL, Coetzee GA, Tilley WD (2007) Control of androgen receptor signaling in prostate cancer by the cochaperone small glutamine rich tetratricopeptide repeat containing protein a. Cancer Res 67:10087–10096PubMedCrossRefGoogle Scholar
  14. Callahan MA, Handley MA, Lee Y-H, Talbot KJ, Harper JW, Panganiban AT (1998) Functional interaction of human immunodeficiency virus type 1 Vpu and Gag with a novel member of the tetratricopeptide repeat protein family. J Virol 72:5189–5197PubMedGoogle Scholar
  15. Callebaut I, Renoir JM, Lebeau MC, Massol N, Burny A, Baulieu EE, Mornon JP (1992) An immunophilin that binds M(r) 90,000 heat shock protein: main structural features of a mammalian p59 protein. PNAS 89:6270–6274PubMedCrossRefGoogle Scholar
  16. Carrello A, Ingley E, Minchin RF, Tsai S, Ratajczak T (1999) The common tetratricopeptide repeat acceptor site for steroid receptor-associated immunophilins and Hop is located in the dimerization domain of Hsp90. J Biol Chem 274:2682–2689PubMedCrossRefGoogle Scholar
  17. Carrigan PE, Sikkink LA, Smith DF, Ramirez-Alvarado M (2006) Domain:domain interactions within Hop, the Hsp70/Hsp90 organizing protein, are required for protein stability and structure. Protein Sci 15:522–532PubMedCrossRefGoogle Scholar
  18. Carvalho AF, Grou CP, Pinto MP, Alencastre IS, Costa-Rodrigues J, Fransen M, Sá-Miranda C, Azevedo JE (2007) Functional characterization of two missense mutations in Pex5p—C11S and N526K. Biochim Biophys Acta, Mol Cell Res 1773:1141–1148PubMedCrossRefGoogle Scholar
  19. Chadli A, Graham JD, Abel MG, Jackson TA, Gordon DF, Wood WM, Felts SJ, Horwitz KB, Toft D (2006) GCUNC-45 is a novel regulator for the progesterone receptor/Hsp90 chaperoning pathway. Mol Cell Biol 26:1722–1730PubMedCrossRefGoogle Scholar
  20. Chadli A, Bruinsma ES, Stensgard B, Toft D (2008) Analysis of Hsp90 cochaperone interactions reveals a novel mechanism for TPR protein recognition. Biochemistry 47:2850–2857PubMedCrossRefGoogle Scholar
  21. Chatterjee A, Wang L, Armstrong DL, Rossie S (2010) Activated Rac1 GTPase translocates protein phosphatase 5 to the cell membrane and stimulates phosphatase activity in vitro. J Biol Chem 285:3872–3882PubMedCrossRefGoogle Scholar
  22. Chen MX, Cohen PTW (1997) Activation of protein phosphatase 5 by limited proteolysis or the binding of polyunsaturated fatty acids to the TPR domain. FEBS Lett 400:136–140PubMedCrossRefGoogle Scholar
  23. Chen S, Smith DF (1998) Hop as an adaptor in the heat shock protein 70 (Hsp70) and Hsp90 chaperone machinery. J Biol Chem 273:35194–35200PubMedCrossRefGoogle Scholar
  24. Chen M-S, Silverstein AM, Pratt WB, Chinkers M (1996a) The tetratricopeptide repeat domain of protein phosphatase 5 mediates binding to glucocorticoid receptor heterocomplexes and acts as a dominant negative mutant. J Biol Chem 271:32315–32320PubMedCrossRefGoogle Scholar
  25. Chen S, Prapapanich V, Rimerman RA, Honore B, Smith DF (1996b) Interactions of p60, a mediator of progesterone receptor assembly, with heat shock proteins Hsp90 and Hsp70. Mol Endocrinol 10:682–693PubMedCrossRefGoogle Scholar
  26. Chen S, Sullivan WP, Toft DO, Smith DF (1998) Differential interactions of p23 and the TPR-containing proteins Hop, Cyp40, FKBP52 and FKBP51 with Hsp90 mutants. Cell Stress Chaperones 3:118–129PubMedCrossRefGoogle Scholar
  27. Cheung-Flynn J, Roberts PJ, Riggs DL, Smith DF (2003) C-terminal sequences outside the tetratricopeptide repeat domain of FKBP51 and FKBP52 cause differential binding to Hsp90. J Biol Chem 278:17388–17394PubMedCrossRefGoogle Scholar
  28. Cheung-Flynn J, Prapapanich V, Cox MB, Riggs DL, Suarez-Quian C, Smith DF (2005) Physiological role for the cochaperone FKBP52 in androgen receptor signaling. Mol Endocrinol 19:1654–1666PubMedCrossRefGoogle Scholar
  29. Cohen PTW (1997) Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem Sci 22:245–251PubMedCrossRefGoogle Scholar
  30. Connell P, Ballinger CA, Jiang J, Wu Y, Thompson LJ, Hohfeld J, Patterson C (2001) The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 3:93PubMedCrossRefGoogle Scholar
  31. Cox MB, Riggs DL, Hessling M, Schumacher F, Buchner J, Smith DF (2007) FK506-binding protein 52 phosphorylation: a potential mechanism for regulating steroid hormone receptor activity. Mol Endocrinol 21:2956–2967PubMedCrossRefGoogle Scholar
  32. Cyr DM, Höhfeld J, Patterson C (2002) Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem Sci 27:368–375PubMedCrossRefGoogle Scholar
  33. Cziepluch C, Kordes E, Poirey R, Grewenig A, Rommelaere J, Jauniaux J-C (1998) Identification of a novel cellular TPR-containing protein, SGT, that interacts with the nonstructural protein NS1 of parvovirus H-1. J Virol 72:4149–4156PubMedGoogle Scholar
  34. D'Andrea LD, Regan L (2003) TPR proteins: the versatile helix. Trends Biochem Sci 28:655–662PubMedCrossRefGoogle Scholar
  35. Dang PM-C, Morel F, Gougerot-Pocidalo M-A, Benna JE (2003) Phosphorylation of the NADPH oxidase component p67phox by ERK2 and P38MAPK: selectivity of phosphorylated sites and existence of an intramolecular regulatory domain in the tetratricopeptide-rich region. Biochemistry 42:4520–4526PubMedCrossRefGoogle Scholar
  36. Das AK, Cohen PTW, Barford D (1998) The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein–protein interactions. EMBO J 17:1192–1199PubMedCrossRefGoogle Scholar
  37. Dash AB, Orrico FC, Ness SA (1996) The EVES motif mediates both intermolecular and intramolecular regulation of c-Myb. Genes Dev 10:1858–1869PubMedCrossRefGoogle Scholar
  38. Davies TH, Sánchez ER (2005) FKBP52. Int J Biochem Cell Biol 37:42–47PubMedCrossRefGoogle Scholar
  39. Davies TH, Ning Y-M, Sanchez ER (2002) A new first step in activation of steroid receptors. Hormone-induced switching of FKBP51 and FKBP52 immunophilins. J Biol Chem 277:4597–4600PubMedCrossRefGoogle Scholar
  40. Denny WB, Valentine DL, Reynolds PD, Smith DF, Scammell JG (2000) Squirrel monkey immunophilin FKBP51 is a potent inhibitor of glucocorticoid receptor binding. Endocrinology 141:4107–4113PubMedCrossRefGoogle Scholar
  41. Denny WB, Prapapanich V, Smith DF, Scammell JG (2005) Structure–function analysis of Squirrel monkey FK506-binding protein 51, a potent inhibitor of glucocorticoid receptor activity. Endocrinology 146:3194–3201PubMedCrossRefGoogle Scholar
  42. Diekmann D, Abo A, Johnston C, Segal AW, Hall A (1994) Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity. Science 265:531–533PubMedCrossRefGoogle Scholar
  43. Dittmar KD, Hutchison KA, Owens-Grillo JK, Pratt WB (1996) Reconstitution of the steroid receptor·Hsp90 heterocomplex assembly system of rabbit reticulocyte lysate. J Biol Chem 271:12833–12839PubMedCrossRefGoogle Scholar
  44. Donato R (1999) Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. Biochim Biophys Acta, Mol Cell Res 1450:191–231PubMedCrossRefGoogle Scholar
  45. Durand D, Vivès C, Cannella D, Pérez J, Pebay-Peyroula E, Vachette P, Fieschi F (2010) NADPH oxidase activator p67phox behaves in solution as a multidomain protein with semi-flexible linkers. J Struct Biol 169:45–53PubMedCrossRefGoogle Scholar
  46. Dutta S, Tan Y-J (2008) Structural and functional characterization of human SGT and its interaction with Vpu of the human immunodeficiency virus type 1. Biochemistry 47:10123–10131PubMedCrossRefGoogle Scholar
  47. Ebberink MS, Mooyer PAW, Koster J, Dekker CJM, Eyskens FJM, Dionisi-Vici C, Clayton PT, Barth PG, Wanders RJA, Waterham HR (2009) Genotype–phenotype correlation in PEX5-deficient peroxisome biogenesis defective cell lines. Hum Mutat 30:93–98PubMedCrossRefGoogle Scholar
  48. Frydman J, Höhfeld J (1997) Chaperones get in touch: the Hip–Hop connection. Trends Biochem Sci 22:87–92PubMedCrossRefGoogle Scholar
  49. Galigniana MD, Radanyi C, Renoir J-M, Housley PR, Pratt WB (2001) Evidence that the peptidylprolyl isomerase domain of the Hsp90-binding immunophilin FKBP52 is involved in both dynein interaction and glucocorticoid receptor movement to the nucleus. J Biol Chem 276:14884–14889PubMedCrossRefGoogle Scholar
  50. Galigniana MD, Harrell JM, Murphy PJM, Chinkers M, Radanyi C, Renoir J-M, Zhang M, Pratt WB (2002) Binding of Hsp90-associated immunophilins to cytoplasmic dynein: direct binding and in vivo evidence that the peptidylprolyl isomerase domain is a dynein interaction domain. Biochemistry 41:13602–13610PubMedCrossRefGoogle Scholar
  51. Galigniana MD, Erlejman AG, Monte M, Gomez-Sanchez C, Piwien-Pilipuk G (2010) The Hsp90–FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events. Mol Cell Biol 30:1285–1298PubMedCrossRefGoogle Scholar
  52. Gallo LI, Ghini AA, Piwien Pilipuk G, Galigniana MD (2007) Differential recruitment of tetratricorpeptide repeat domain immunophilins to the mineralocorticoid receptor influences both heat-shock protein 90-dependent retrotransport and hormone-dependent transcriptional activity. Biochemistry 46:14044–14057PubMedCrossRefGoogle Scholar
  53. Gatto GJ, Geisbrecht BV, Gould SJ, Berg JM (2000) Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat Struct Biol 9:788–788Google Scholar
  54. Gebauer M, Zeiner M, Gehring U (1997) Proteins interacting with the molecular chaperone Hsp70/Hsc70: physical associations and effects on refolding activity. FEBS Lett 417:109–113PubMedCrossRefGoogle Scholar
  55. Gentile S, Darden T, Erxleben C, Romeo C, Russo A, Martin N, Rossie S, Armstrong DL (2006) Rac GTPase signaling through the PP5 protein phosphatase. PNAS 103:5202–5206PubMedCrossRefGoogle Scholar
  56. Giordano A, Avellino R, Ferraro P, Romano S, Corcione N, Romano MF (2006) Rapamycin antagonizes NF-kB nuclear translocation activated by TNF-a in primary vascular smooth muscle cells and enhances apoptosis. Am J Physiol Heart Circ Physiol 290:H2459–H2465PubMedCrossRefGoogle Scholar
  57. Goebl M, Yanagida M (1991) The TPR snap helix: a novel protein repeat motif from mitosis to transcription. Trends Biochem Sci 16:173–177PubMedCrossRefGoogle Scholar
  58. Golden T, Swingle M, Honkanen R (2008) The role of serine/threonine protein phosphatase type 5 (PP5) in the regulation of stress-induced signaling networks and cancer. Cancer Metastasis Rev 27:169–178PubMedCrossRefGoogle Scholar
  59. Graf C, Stankiewicz M, Nikolay R, Mayer MP (2010) Insights into the conformational dynamics of the E3 Ubiquitin ligase CHIP in complex with chaperones and E2 enzymes. Biochemistry 49:2121–2129PubMedCrossRefGoogle Scholar
  60. Gregory LB, Michael L (1999) The tetratricopeptide repeat: a structural motif mediating protein–protein interactions. BioEssays 21:932–939CrossRefGoogle Scholar
  61. Grizot S, Fieschi F, Dagher M-C, Pebay-Peyroula E (2001) The active N-terminal region of p67phox: structure at 1.8 Å resolution and biochemical characterizations of the A128V mutant implicated in chronic granulomatous disease. J Biol Chem 276:21627–21631PubMedCrossRefGoogle Scholar
  62. Han C-H, Freeman JLR, Lee T, Motalebi SA, Lambeth JD (1998) Regulation of the neutrophil respiratory burst oxidase: identification of an activation domain in p67phox. J Biol Chem 273:16663–16668PubMedCrossRefGoogle Scholar
  63. Hinds TD Jr, Sánchez ER (2008) Protein phosphatase 5. Int J Biochem Cell Biol 40:2358–2362PubMedCrossRefGoogle Scholar
  64. Hirano T, Kinoshita N, Morikawa K, Yanagida M (1990) Snap helix with knob and hole: essential repeats in S. pombe nuclear protein nuc2+. Cell 60:319–328PubMedCrossRefGoogle Scholar
  65. Höhfeld J, Jentsch S (1997) GrpE-like regulation of the Hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J 16:6209–6216PubMedCrossRefGoogle Scholar
  66. Höhfeld J, Minami Y, Hartl F-U (1995) Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 83:589–598PubMedCrossRefGoogle Scholar
  67. Huber AH, Nelson WJ, Weis WI (1997) Three-dimensional structure of the armadillo repeat region of b-catenin. Cell 90:871–882PubMedCrossRefGoogle Scholar
  68. Hubler TR, Denny WB, Valentine DL, Cheung-Flynn J, Smith DF, Scammell JG (2003) The FK506-binding immunophilin FKBP51 is transcriptionally regulated by progestin and attenuates progestin responsiveness. Endocrinology 144:2380–2387PubMedCrossRefGoogle Scholar
  69. Jiang J, Ballinger CA, Wu Y, Dai Q, Cyr DM, Höhfeld J, Patterson C (2001) CHIP is a U-box-dependent E3 ubiquitin ligase. Identification of Hsc70 as a target for ubiquitylation. J Biol Chem 276:42938–42944PubMedCrossRefGoogle Scholar
  70. Kajander T, Sachs JN, Goldman A, Regan L (2009) Electrostatic interactions of Hsp-organizing protein tetratricopeptide domains with Hsp70 and Hsp90: computational analysis and protein engineering. J Biol Chem 284:25364–25374PubMedCrossRefGoogle Scholar
  71. Kallen J, Mikol V, Taylor P, Walkinshaw DM (1998) X-ray structures and analysis of 11 cyclosporin derivatives complexed with cyclophilin A. J Mol Biol 283:435–449PubMedCrossRefGoogle Scholar
  72. Knaus UG, Heyworth PG, Evans T, Curnutte JT, Bokoch GM (1991) Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac 2. Science 254:1512–1515PubMedCrossRefGoogle Scholar
  73. Koga H, Terasawa H, Nunoi H, Takeshige K, Inagaki F, Sumimoto H (1999) Tetratricopeptide repeat (TPR) motifs of p67phox participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J Biol Chem 274:25051–25060PubMedCrossRefGoogle Scholar
  74. Kosano H, Stensgard B, Charlesworth MC, McMahon N, Toft D (1998) The assembly of progesterone receptor–Hsp90 complexes using purified proteins. J Biol Chem 273:32973–32979PubMedCrossRefGoogle Scholar
  75. Kumar A, Roach C, Hirsh IS, Turley S, deWalque S, Michels PAM, Hol WGJ (2001) An unexpected extended conformation for the third TPR motif of the peroxin PEX5 from Trypanosoma brucei. J Mol Biol 307:271–282PubMedCrossRefGoogle Scholar
  76. Lamb JR, Tugendreich S, Hieter P (1995) Tetratrico peptide repeat interactions: to TPR or not to TPR? Trends Biochem Sci 20:257–259PubMedCrossRefGoogle Scholar
  77. Lapouge K, Smith SJM, Walker PA, Gamblin SJ, Smerdon SJ, Rittinger K (2000) Structure of the TPR domain of p67phox in complex with Rac·GTP. Mol Cell 6:899–907PubMedGoogle Scholar
  78. Lassle M, Blatch GL, Kundra V, Takatori T, Zetter BR (1997) Stress-inducible, murine protein mSTI1. Characterization of binding domains for heat shock proteins and in vitro phosphorylation by different kinases. J Biol Chem 272:1876–1884PubMedCrossRefGoogle Scholar
  79. Leverson JD, Ness SA (1998) Point mutations in v-Myb disrupt a cyclophilin-catalyzed negative regulatory mechanism. Mol Cell 1:203–211PubMedCrossRefGoogle Scholar
  80. Li J, Mahajan A, Tsai M-D (2006) Ankyrin repeat: a unique motif mediating protein–protein interactions. Biochemistry 45:15168–15178PubMedCrossRefGoogle Scholar
  81. Liou S-T, Wang C (2005) Small glutamine-rich tetratricopeptide repeat-containing protein is composed of three structural units with distinct functions. Arch Biochem Biophys 435:253–263PubMedCrossRefGoogle Scholar
  82. Liu D, Bienkowska J, Petosa C, Collier RJ, Fu H, Liddington R (1995) Crystal structure of the zeta isoform of the 14-3-3 protein. Nature 376:191–194PubMedCrossRefGoogle Scholar
  83. Main ERG, Lowe AR, Mochrie SGJ, Jackson SE, Regan L (2005) A recurring theme in protein engineering: the design, stability and folding of repeat proteins. Curr Opin Struct Biol 15:464–471PubMedCrossRefGoogle Scholar
  84. Mamane Y, Sharma S, Petropoulos L, Lin R, Hiscott J (2000) Posttranslational regulation of IRF-4 activity by the immunophilin FKBP52. Immunity 12:129–140PubMedCrossRefGoogle Scholar
  85. Maniataki E, Mourelatos Z (2005) Human mitochondrial tRNAMet is exported to the cytoplasm and associates with the Argonaute 2 protein. RNA 11:849–852PubMedCrossRefGoogle Scholar
  86. Marcu MG, Chadli A, Bouhouche I, Catelli M, Neckers LM (2000) The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem 275:37181–37186PubMedCrossRefGoogle Scholar
  87. Massol N, Lebeau M-C, Renoir J-M, Faber LE, Baulieu E-E (1992) Rabbit FKBP59-heat shock protein binding immunophillin (HBI) is a calmodulin binding protein. Biochem Biophys Res Commun 187:1330–1335PubMedCrossRefGoogle Scholar
  88. McLaughlin SH, Smith HW, Jackson SE (2002) Stimulation of the weak ATPase activity of human Hsp90 by a client protein. J Mol Biol 315:787–798PubMedCrossRefGoogle Scholar
  89. Miyata Y, Chambraud B, Radanyi C, Leclerc J, Lebeau M-C, Renoir J-M, Shirai R, Catelli M-G, Yahara I, Baulieu E-E (1997) Phosphorylation of the immunosuppressant FK506-binding protein FKBP52 by casein kinase II: regulation of Hsp90-binding activity of FKBP52. PNAS 94:14500–14505PubMedCrossRefGoogle Scholar
  90. Mok D, Allan RK, Carrello A, Wangoo K, Walkinshaw MD, Ratajczak T (2006) The chaperone function of cyclophilin 40 maps to a cleft between the prolyl isomerase and tetratricopeptide repeat domains. FEBS Lett 580:2761–2768PubMedCrossRefGoogle Scholar
  91. Mucenski ML, McLain K, Kier AB, Swerdlow SH, Schreiner CM, Miller TA, Pietryga DW, Scott WJ, Potter SS (1991) A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 65:677–689PubMedCrossRefGoogle Scholar
  92. Murata S, Minami Y, Minami M, Chiba T, Tanaka K (2001) CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep 2:1133–1138PubMedCrossRefGoogle Scholar
  93. Nelson GM, Huffman H, Smith DF (2003) Comparison of the carboxy-terminal DP-repeat region in the co-chaperones Hop and Hip. Cell Stress Chaperones 8:125–133PubMedCrossRefGoogle Scholar
  94. Ness SA (1996) The Myb oncoprotein: regulating a regulator. Biochim Biophys Acta Rev Cancer 1288:F123–F139Google Scholar
  95. Ni L, Yang C-S, Gioeli D, Frierson H, Toft DO, Paschal BM (2010) FKBP51 promotes assembly of the Hsp90 chaperone complex and regulates androgen receptor signaling in prostate cancer cells. Mol Cell Biol 30:1243–1253PubMedCrossRefGoogle Scholar
  96. Odunuga OO, Hornby JA, Bies C, Zimmermann R, Pugh DJ, Blatch GL (2003) Tetratricopeptide repeat motif-mediated Hsc70-mSTI1 interaction. J Biol Chem 278:6896–6904PubMedCrossRefGoogle Scholar
  97. Onuoha SC, Coulstock ET, Grossmann JG, Jackson SE (2008) Structural studies on the co-chaperone Hop and its complexes with Hsp90. J Mol Biol 379:732–744PubMedCrossRefGoogle Scholar
  98. Pare JM, Tahbaz N, Lopez-Orozco J, LaPointe P, Lasko P, Hobman TC (2009) Hsp90 regulates the function of Argonaute 2 and its recruitment to stress granules and P-bodies. Mol Biol Cell 20:3273–3284PubMedCrossRefGoogle Scholar
  99. Periyasamy S, Hinds T Jr, Shemshedini L, Shou W, Sanchez ER (2010) FKBP51 and Cyp40 are positive regulators of androgen-dependent prostate cancer cell growth and the targets of FK506 and cyclosporin A. Oncogene 29:1691–1701PubMedCrossRefGoogle Scholar
  100. Pirkl F, Buchner J (2001) Functional analysis of the Hsp90-associated human peptidyl prolyl cis/trans isomerases FKBP51, FKBP52 and CyP40. J Mol Biol 308:795–806PubMedCrossRefGoogle Scholar
  101. Ponting CP (1996) Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3-kinases: binding partners of SH3 domains? Protein Sci 5:2353–2357PubMedCrossRefGoogle Scholar
  102. Prapapanich V, Chen S, Nair SC, Rimerman RA, Smith DF (1996) Molecular cloning of human p48, a transient component of progesterone receptor complexes and an Hsp70-binding protein. Mol Endocrinol 10:420–431PubMedCrossRefGoogle Scholar
  103. Prapapanich V, Chen S, Smith DF (1998) Mutation of Hip’s carboxy-terminal region inhibits a transitional stage of progesterone receptor assembly. Mol Cell Biol 18:944–952PubMedGoogle Scholar
  104. Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the Hsp90/Hsp70-based chaperone machinery. Exp Biol Med 228:111–133Google Scholar
  105. Pratt WB, Galigniana MD, Harrell JM, DeFranco DB (2004) Role of Hsp90 and the Hsp90-binding immunophilins in signalling protein movement. Cell Signal 16:857–872PubMedCrossRefGoogle Scholar
  106. Prodromou C, Siligardi G, O'Brien R, Woolfson DN, Regan L, Panaretou B, Ladbury JE, Piper PW, Pearl LH (1999) Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J 18:754–762PubMedCrossRefGoogle Scholar
  107. Qing K, Hansen J, Weigel-Kelley KA, Tan M, Zhou S, Srivastava A (2001) Adeno-associated virus type 2-mediated gene transfer: role of cellular FKBP52 protein in transgene expression. J Virol 75:8968–8976PubMedCrossRefGoogle Scholar
  108. Radanyi C, Chambraud B, Baulieu EE (1994) The ability of the immunophilin FKBP59-HBI to interact with the 90-kDa heat shock protein is encoded by its tetratricopeptide repeat domain. PNAS 91:11197–11201PubMedCrossRefGoogle Scholar
  109. Ramsey AJ, Chinkers M (2002) Identification of potential physiological activators of protein phosphatase 5. Biochemistry 41:5625–5632PubMedCrossRefGoogle Scholar
  110. Ramsey AJ, Russell LC, Chinkers M (2009) C-terminal sequences of Hsp70 and Hsp90 as non-specific anchors for tetratricopeptide repeat (TPR) proteins. Biochem J 423:411–419PubMedCrossRefGoogle Scholar
  111. Ratajczak T, Carrello A (1996) Cyclophilin 40 (CyP-40), mapping of its Hsp90 binding domain and evidence that FKBP52 competes with CyP-40 for Hsp90 binding. J Biol Chem 271:2961–2965PubMedCrossRefGoogle Scholar
  112. Ratajczak T, Hlaing J, Brockway MJ, Hahnel R (1990) Isolation of untransformed bovine estrogen receptor without molybdate stabilization. J Steroid Biochem 35:543–553PubMedCrossRefGoogle Scholar
  113. Ratajczak T, Carrello A, Minchin RF (1995) Biochemical and calmodulin binding properties of estrogen receptor binding cyclophilin expressed in Escherichia coli. Biochem Biophys Res Commun 209:117–125PubMedCrossRefGoogle Scholar
  114. Ratajczak T, Ward BK, Minchin RF (2003) Immunophilin chaperones in steroid receptor signalling. Curr Top Med Chem 3:1348–1357PubMedCrossRefGoogle Scholar
  115. Reynolds PD, Ruan Y, Smith DF, Scammell JG (1999) Glucocorticoid resistance in the squirrel monkey is associated with overexpression of the immunophilin FKBP51. J Clin Endocrinol Metab 84:663–669PubMedCrossRefGoogle Scholar
  116. Riggs DL, Roberts PJ, Chirillo SC, Cheung-Flynn J, Prapapanich V, Ratajczak T, Gaber R, Picard D, Smith DF (2003) The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. EMBO J 22:1158–1167PubMedCrossRefGoogle Scholar
  117. Riggs DL, Cox MB, Cheung-Flynn J, Prapapanich V, Carrigan PE, Smith DF (2004) Functional specificity of co-chaperone interactions with Hsp90 client proteins. Crit Rev Biochem Mol Biol 39:279–295PubMedCrossRefGoogle Scholar
  118. Riggs DL, Cox MB, Tardif HL, Hessling M, Buchner J, Smith DF (2007) Noncatalytic role of the FKBP52 peptidyl-prolyl isomerase domain in the regulation of steroid hormone signaling. Mol Cell Biol 27:8658–8669PubMedCrossRefGoogle Scholar
  119. Russell LC, Whitt SR, Chen M-S, Chinkers M (1999) Identification of conserved residues required for the binding of a tetratricopeptide repeat domain to heat shock protein 90. J Biol Chem 274:20060–20063PubMedCrossRefGoogle Scholar
  120. Sampathkumar P, Roach C, Michels PAM, Hol WGJ (2008) Structural insights into the recognition of peroxisomal targeting signal 1 by Trypanosoma brucei Peroxin 5. J Mol Biol 381:867–880PubMedCrossRefGoogle Scholar
  121. Scammell JG, Denny WB, Valentine DL, Smith DF (2001) Overexpression of the FK506-binding immunophilin FKBP51 is the common cause of glucocorticoid resistance in three New World primates. Gen Comp Endocrinol 124:152–165PubMedCrossRefGoogle Scholar
  122. Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I (2000) Structure of TPR domain–peptide complexes: critical elements in the assembly of the Hsp70–Hsp90 multichaperone machine. Cell 101:199–210PubMedCrossRefGoogle Scholar
  123. Shimamoto S, Kubota Y, Tokumitsu H, Kobayashi R (2010) S100 proteins regulate the interaction of Hsp90 with Cyclophilin 40 and FKBP52 through their tetratricopeptide repeats. FEBS Lett 584:1119–1125PubMedCrossRefGoogle Scholar
  124. Shiozawa K, Konarev PV, Neufeld C, Wilmanns M, Svergun DI (2009) Solution structure of human Pex5·Pex14·PTS1 protein complexes obtained by small angle X-ray scattering. J Biol Chem 284:25334–25342PubMedCrossRefGoogle Scholar
  125. Shishodia S, Aggarwal BB (2002) Nuclear factor-κB activation: a question of life or death. J Biochem Mol Biol 35:28–40PubMedCrossRefGoogle Scholar
  126. Sikorski RS, Boguski MS, Goebl M, Hieter P (1990) A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 60:307–317PubMedCrossRefGoogle Scholar
  127. Siligardi G, Hu B, Panaretou B, Piper PW, Pearl LH, Prodromou C (2004) Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle. J Biol Chem 279:51989–51998PubMedCrossRefGoogle Scholar
  128. Silverstein AM, Galigniana MD, Chen M-S, Owens-Grillo JK, Chinkers M, Pratt WB (1997) Protein phosphatase 5 is a major component of glucocorticoid receptor·Hsp90 complexes with properties of an FK506-binding immunophilin. J Biol Chem 272:16224–16230PubMedCrossRefGoogle Scholar
  129. Sinars CR, Cheung-Flynn J, Rimerman RA, Scammell JG, Smith DF, Clardy J (2003) Structure of the large FK506-binding protein FKBP51, an Hsp90-binding protein and a component of steroid receptor complexes. PNAS 100:868–873PubMedCrossRefGoogle Scholar
  130. Skinner J, Sinclair C, Romeo C, Armstrong D, Charbonneau H, Rossie S (1997) Purification of a fatty acid-stimulated protein-serine/threonine phosphatase from bovine brain to its identification as a homolog of protein phosphatase 5. J Biol Chem 272:22464–22471PubMedCrossRefGoogle Scholar
  131. Smith DF (1993) Dynamics of heat shock protein 90-progesterone receptor binding and the disactivation loop model for steroid receptor complexes. Mol Endocrinol 7:1418–1429PubMedCrossRefGoogle Scholar
  132. Smith DF (2004) Tetratricopeptide repeat cochaperones in steroid receptor complexes. Cell Stress Chaperones 9:109–121PubMedCrossRefGoogle Scholar
  133. Smith MR, Willmann MR, Wu G, Berardini TZ, Möller B, Weijers D, Poethig RS (2009) Cyclophilin 40 is required for microRNA activity in Arabidopsis. PNAS 106:5424–5429PubMedCrossRefGoogle Scholar
  134. Stanley WA, Wilmanns M (2006) Dynamic architecture of the peroxisomal import receptor Pex5p. Biochim Biophys Acta, Mol Cell Res 1763:1592–1598PubMedCrossRefGoogle Scholar
  135. Stanley WA, Filipp FV, Kursula P, Schüller N, Erdmann R, Schliebs W, Sattler M, Wilmanns M (2006) Recognition of a functional peroxisome type 1 target by the dynamic import receptor Pex5p. Mol Cell 24:653–663PubMedCrossRefGoogle Scholar
  136. Stanley WA, Fodor K, Marti-Renom MA, Schliebs W, Wilmanns M (2007) Protein translocation into peroxisomes by ring-shaped import receptors. FEBS Lett 581:4795–4802PubMedCrossRefGoogle Scholar
  137. Storey NM, O'Bryan JP, Armstrong DL (2002) Rac and Rho mediate opposing hormonal regulation of the Ether-A-Go-Go-related potassium channel. Curr Biol 12:27–33PubMedCrossRefGoogle Scholar
  138. Sumimoto H, Miyano K, Takeya R (2005) Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun 338:677–686PubMedCrossRefGoogle Scholar
  139. Takayama S, Bimston DN, Matsuzawa S, Freeman BC, Aime-Sempe C, Xie Z, Morimoto RI, Reed JC (1997) BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J 16:4887–4896PubMedCrossRefGoogle Scholar
  140. Taylor P, Dornan J, Carrello A, Minchin RF, Ratajczak T, Walkinshaw MD (2001) Two structures of cyclophilin 40: folding and fidelity in the TPR domains. Structure 9:431–438PubMedCrossRefGoogle Scholar
  141. Tranguch S, Cheung-Flynn J, Daikoku T, Prapapanich V, Cox MB, Xie H, Wang H, Das SK, Smith DF, Dey SK (2005) From the cover: cochaperone immunophilin FKBP52 is critical to uterine receptivity for embryo implantation. PNAS 102:14326–14331PubMedCrossRefGoogle Scholar
  142. Tzamarias D, Struhl K (1995) Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8–Tup1 corepressor complex to differentially regulated promoters. Genes Dev 9:821–831PubMedCrossRefGoogle Scholar
  143. Ward BK, Allan RK, Mok D, Temple SE, Taylor P, Dornan J, Mark PJ, Shaw DJ, Kumar P, Walkinshaw MD, Ratajczak T (2002) A structure-based mutational analysis of cyclophilin 40 identifies key residues in the core tetratricopeptide repeat domain that mediate binding to Hsp90. J Biol Chem 277:40799–40809PubMedCrossRefGoogle Scholar
  144. Westberry JM, Sadosky PW, Hubler TR, Gross KL, Scammell JG (2006) Glucocorticoid resistance in squirrel monkeys results from a combination of a transcriptionally incompetent glucocorticoid receptor and overexpression of the glucocorticoid receptor co-chaperone FKBP51. J Steroid Biochem Mol Biol 100:34–41PubMedCrossRefGoogle Scholar
  145. Wochnik GM, Rüegg J, Abel GA, Schmidt U, Holsboer F, Rein T (2005) FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J Biol Chem 280:4609–4616PubMedCrossRefGoogle Scholar
  146. Wu B, Li P, Liu Y, Lou Z, Ding Y, Shu C, Ye S, Bartlam M, Shen B, Rao Z (2004) 3D structure of human FK506-binding protein 52: implications for the assembly of the glucocorticoid receptor/Hsp90/immunophilin heterocomplex. PNAS 101:8348–8353PubMedCrossRefGoogle Scholar
  147. Xiao B, Smerdon SJ, Jones DH, Dodson GG, Soneji Y, Aitken A, Gamblin SJ (1995) Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways. Nature 376:188–191PubMedCrossRefGoogle Scholar
  148. Yang J, Roe SM, Cliff MJ, Williams MA, Ladbury JE, Cohen PTW, Barford D (2005) Molecular basis for TPR domain-mediated regulation of protein phosphatase 5. EMBO J 24:1–10PubMedCrossRefGoogle Scholar
  149. Yang Z, Wolf IM, Chen H, Periyasamy S, Chen Z, Yong W, Shi S, Zhao W, Xu J, Srivastava A, Sanchez ER, Shou W (2006) FK506-binding protein 52 is essential to uterine reproductive physiology controlled by the progesterone receptor A isoform. Mol Endocrinol 20:2682–2694PubMedCrossRefGoogle Scholar
  150. Yong W, Yang Z, Periyasamy S, Chen H, Yucel S, Li W, Lin LY, Wolf IM, Cohn MJ, Baskin LS, Sanchez ER, Shou W (2007) Essential role for co-chaperone FKBP52 but not FKBP51 in androgen receptor-mediated signaling and physiology. J Biol Chem 282:5026–5036PubMedCrossRefGoogle Scholar
  151. Young ET, Saario J, Kacherovsky N, Chao A, Sloan JS, Dombek KM (1998) Characterization of a p53-related activation domain in Adr1p that is sufficient for ADR1-dependent gene expression. J Biol Chem 273:32080–32087PubMedCrossRefGoogle Scholar
  152. Zhang M, Windheim M, Roe SM, Peggie M, Cohen P, Prodromou C, Pearl LH (2005) Chaperoned ubiquitylation—crystal structures of the CHIP U Box E3 ubiquitin ligase and a CHIP–Ubc13–Uev1a complex. Mol Cell 20:525–538PubMedCrossRefGoogle Scholar
  153. Zhao W, Wu J, Zhong L, Srivastava A (2007) Adeno-associated virus 2-mediated gene transfer: role of a cellular serine/threonine protein phosphatase in augmenting transduction efficiency. Gene Ther 14:545–550PubMedCrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2010

Authors and Affiliations

  1. 1.Centre for Medical ResearchThe University of Western AustraliaNedlandsAustralia
  2. 2.The Department of Endocrinology & DiabetesSir Charles Gairdner HospitalNedlandsAustralia

Personalised recommendations