Advertisement

Cell Stress and Chaperones

, Volume 16, Issue 1, pp 69–80 | Cite as

Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagellates in response to thermal stress: possible implications for coral bleaching

  • Nedeljka N. Rosic
  • Mathieu Pernice
  • Sophie Dove
  • Simon Dunn
  • Ove Hoegh-Guldberg
Original Paper

Abstract

Unicellular photosynthetic dinoflagellates of the genus Symbiodinium are the most common endosymbionts of reef-building scleractinian corals, living in a symbiotic partnership known to be highly susceptible to environmental changes such as hyperthermic stress. In this study, we identified members of two major heat shock proteins (HSPs) families, Hsp70 and Hsp90, in Symbiodinium sp. (clade C) with full-length sequences that showed the highest similarity and evolutionary relationship with other known HSPs from dinoflagellate protists. Regulation of HSPs gene expression was examined in samples of the scleractinian coral Acropora millepora subjected to elevated temperatures progressively over 18 h (fast) and 120 h (gradual thermal stress). Moderate to severe heat stress at 26°C and 29°C (+3°C and +6°C above average sea temperature) resulted in an increase in algal Hsp70 gene expression from 39% to 57%, while extreme heat stress (+9°C) reduced Hsp70 transcript abundance by 60% (after 18 h) and 70% (after 120 h). Elevated temperatures decreased an Hsp90 expression under both rapid and gradual heat stress scenarios. Comparable Hsp70 and Hsp90 gene expression patterns were observed in Symbiodinium cultures and in hospite, indicating their independent regulation from the host. Differential gene expression profiles observed for Hsp70 and Hsp90 suggests diverse roles of these molecular chaperones during heat stress response. Reduced expression of the Hsp90 gene under heat stress can indicate a reduced role in inhibiting the heat shock transcription factor which may lead to activation of heat-inducible genes and heat acclimation.

Keywords

Symbiodinium Dinoflagellate HSP Real-time RT-PCR Heat stress Coral bleaching 

Notes

Acknowledgments

We would like to thanks Dr. Olga Pantos for critical comments on the manuscript and Dr. Ruth Reef for the coral egg–sperm sample. This research was supported by the ARC Centre of Excellence for Coral Reef Studies, a Marie Curie International Outgoing Fellowship to M.P. and Coral Reef Targeted Research Project (www.gefcoral.org).

References

  1. Arya R, Mallik M, Lakhotia SC (2007) Heat shock genes—integrating cell survival and death. J Biosci 32:595–610CrossRefPubMedGoogle Scholar
  2. Beissinger M, Buchner J (1998) How chaperones fold proteins. Biol Chem 379:245–259PubMedGoogle Scholar
  3. Berkelmans R (2002) Time-integrated thermal bleaching thresholds of reefs and their variation on the Great Barrier Reef. Mar Ecol Prog Ser 229:73–82CrossRefGoogle Scholar
  4. Berkelmans R, Willis BL (1999) Seasonal and local spatial patterns in the upper thermal limits of corals on the inshore Central Great Barrier Reef. Coral Reefs 18:219–228CrossRefGoogle Scholar
  5. Bettencourt BR, Feder ME (2001) Hsp70 duplication in the Drosophila melanogaster species group: How and when did two become five? Molecular Biology and Evolution 18:1272–1282Google Scholar
  6. Bijlsma R, Loeschcke V (2005) Environmental stress, adaptation and evolution: an overview. J Evol Biol 18:744–749CrossRefPubMedGoogle Scholar
  7. Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the Central Red Sea. Science 329:322–325CrossRefPubMedGoogle Scholar
  8. Chen B, Zhong D, Monteiro A (2006) Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics. doi: 10.1186/1471-2164-7-156 Google Scholar
  9. Cheng L, Hirst K, Piper PW (1992) Authentic temperature-regulation of a heat shock gene inserted into yeast on a high copy number vector. Influences of overexpression of HSP90 protein on high temperature growth and thermotolerance. Biochim Biophys Acta: Gene Struct Expression 1132:26–34CrossRefGoogle Scholar
  10. Clark MS, Peck LS (2009a) HSP70 heat shock proteins and environmental stress in Antarctic marine organisms: a mini-review. Mar Genom 2:11–18CrossRefGoogle Scholar
  11. Clark MS, Peck LS (2009b) Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna). Cell Stress Chaperones 14:649–660CrossRefPubMedGoogle Scholar
  12. Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34CrossRefPubMedGoogle Scholar
  13. Császár NBM, Ralph PJ, Frankham R, Berkelmans R, van Oppen MJH (2010) Estimating the potential for adaptation of corals to climate warming. PLoS ONE 5:e9751CrossRefPubMedGoogle Scholar
  14. Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79:129–168CrossRefPubMedGoogle Scholar
  15. DeSalvo MK, Sunagawa S, Fisher PL, Voolstra CR, Iglesias-Prieto R, Medina M (2010a) Coral host transcriptomic states are correlated with Symbiodinium genotypes. Mol Ecol 19:1174–1186CrossRefPubMedGoogle Scholar
  16. DeSalvo MK, Sunagawa S, Voolstra CR, Medina M (2010b) Transcriptomic responses to heat stress and bleaching in the elkhorn coral Acropora palmata. Mar Ecol Prog Ser 402:97–113CrossRefGoogle Scholar
  17. Dove S (2004) Scleractinian corals with photoprotective host pigments are hypersensitive to thermal bleaching. Mar Ecol Prog Ser 272:99–116CrossRefGoogle Scholar
  18. Downs CA, Mueller E, Phillips S, Fauth JE, Woodley CM (2000) A molecular biomarker system for assessing the health of coral (Montastraea faveolata) during heat stress. Mar Biotechnol 2:533–544CrossRefPubMedGoogle Scholar
  19. Fast NM, Xue L, Bingham S, Keeling PJ (2002) Re-examining alveolate evolution using multiple protein molecular phylogenies. J Eukaryot Microbiol 49:30–37CrossRefPubMedGoogle Scholar
  20. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annual Review of Physiology 61:243–282CrossRefPubMedGoogle Scholar
  21. Felsenstein J (1989) PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166Google Scholar
  22. Fitt WK, Gates RD, Hoegh-Guldberg O, Bythell JC, Jatkar A, Grottoli AG, Gomez M, Fisher P, Lajuenesse TC, Pantos O, Iglesias-Prieto R, Franklin DJ, Rodrigues LJ, Torregiani JM, van Woesik R, Lesser MP (2009) Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: the host does matter in determining the tolerance of corals to bleaching. J Exp Mar Biol Ecol 373:102–110CrossRefGoogle Scholar
  23. Gao Q, Zhao J, Song L, Qiu L, Yu Y, Zhang H, Ni D (2008) Molecular cloning, characterization and expression of heat shock protein 90 gene in the haemocytes of bay scallop Argopecten irradians. Fish Shellfish Immunol 24:379–385CrossRefPubMedGoogle Scholar
  24. Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol 8:229–239CrossRefPubMedGoogle Scholar
  25. Gunter HM, Degnan BM (2007) Developmental expression of Hsp90, Hsp70 and HSF during morphogenesis in the vetigastropod Haliotis asinina. Dev Genes Evol 217:603–612CrossRefPubMedGoogle Scholar
  26. Gupta RS (1995) Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol Biol Evol 12:1063–1073PubMedGoogle Scholar
  27. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world's coral reefs. Mar Freshwater Res 50:839–866CrossRefGoogle Scholar
  28. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science (New York, NY) 318:1737–1742Google Scholar
  29. Hoffman AA, Parsons PA (1991) Evolutionary genetics and environmental stress. Evolutionary genetics and environmental stress: 284Google Scholar
  30. Hong SW, Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci USA 97:4392–4397CrossRefPubMedGoogle Scholar
  31. Iglesias-Prieto R, Matta JL, Robins WA, Trench RK (1992) Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc Natl Acad Sci USA 89:10302–10305CrossRefPubMedGoogle Scholar
  32. IPCC (2007) The Physical Science Basis—Summary for Policymakers. Intergovernmental Panel on Climate Change 2007Google Scholar
  33. Iwama GK, Afonso LO, Todgham A, Ackerman P, Nakano K (2004) Are hsps suitable for indicating stressed states in fish? J Exp Biol 207:15–19CrossRefPubMedGoogle Scholar
  34. Kabani M, Martineau CN (2008) Multiple Hsp70 isoforms in the eukaryotic cytosol: mere redundancy or functional specificity? Curr Genomics 9:338–348CrossRefPubMedGoogle Scholar
  35. Krone PH, Evans TG, Blechinger SR (2003) Heat shock gene expression and function during zebrafish embryogenesis. Semin Cell Dev Biol 14:267–274CrossRefPubMedGoogle Scholar
  36. LaJeunesse TC, Loh WKW, Van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054CrossRefGoogle Scholar
  37. Lees-Miller SP, Anderson CW (1989) The human double-stranded DNA-activated protein kinase phosphorylates the 90-kDa heat-shock protein, hsp90Î ± at two NH2-terminal threonine residues. J Biol Chem 264:17275–17280PubMedGoogle Scholar
  38. Leggat W, Hoegh-Guldberg O, Dove S, Yellowlees D (2007) Analysis of an EST library from the dinoflagellate (Symbiodinium sp.) symbiont of reef-building corals. J Phycol 43:1010–1021CrossRefGoogle Scholar
  39. Leignel V, Cibois M, Moreau B, Chenais B (2007) Identification of new subgroup of HSP70 in Bythograeidae (hydrothermal crabs) and Xanthidae. Gene 396:84–92CrossRefPubMedGoogle Scholar
  40. Lesser MP (2007) Coral reef bleaching and global climate change: can corals survive the next century? Proc Natl Acad Sci USA 104:5259–5260CrossRefPubMedGoogle Scholar
  41. Li Z, Srivastava P (2004) Heat-shock proteins. Curr Protoc Immunol Appendix 1:Appendix 1TGoogle Scholar
  42. Lin BL, Wang JS, Liu HC, Chen RW, Meyer Y, Barakat A, Delseny M (2001) Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chap 6:201–208CrossRefGoogle Scholar
  43. Luan W, Li F, Zhang J, Wen R, Li Y, Xiang J (2010) Identification of a novel inducible cytosolic Hsp70 gene in Chinese shrimp Fenneropenaeus chinensis and comparison of its expression with the cognate Hsc70 under different stresses. Cell Stress Chaperones 15:83–93CrossRefPubMedGoogle Scholar
  44. Middlebrook R, Hoegh-Guldberg O, Leggat W (2008) The effect of thermal history on the susceptibility of reef-building corals to thermal stress. J Exp Biol 211:1050–1056CrossRefPubMedGoogle Scholar
  45. Middlebrook R, Anthony KR, Hoegh-Guldberg O, Dove S (2010) Heating rate and symbiont productivity are key factors determining thermal stress in the reef-building coral Acropora formosa. J Exp Biol 213:1026–1034CrossRefPubMedGoogle Scholar
  46. Mieog JC, Olsen JL, Berkelmans R, Bleuler-Martinez SA, Willis BL,Van Oppen MJH (2009) The roles and interactions of symbiont, host and environment in defining coral fitness. PLoS ONE 4Google Scholar
  47. Pearl LH, Prodromou C, Workman P (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 410:439–453CrossRefPubMedGoogle Scholar
  48. Pochon X, Montoya-Burgos JI, Stadelmann B, Pawlowski J (2006) Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol Phylogenet Evol 38:20–30CrossRefPubMedGoogle Scholar
  49. Potts DC, Swart PK (1984) Water temperature as an indicator of environmental variability on a coral reef. Limnol Oceanogr 29:504–516CrossRefGoogle Scholar
  50. Ramya TNC, Surolia N, Surolia A (2006) 15-Deoxyspergualin modulates Plasmodium falciparum heat shock protein function. Biochem Biophys Res Commun 348:585–592CrossRefPubMedGoogle Scholar
  51. Richier S, Furla P, Plantivaux A, Merle P-L, Allemand D (2005) Symbiosis-induced adaptation to oxidative stress. J Exp Biol 208:277–285CrossRefPubMedGoogle Scholar
  52. Rodriguez-Lanetty M, Harii S, Hoegh-Guldberg O (2009) Early molecular responses of coral larvae to hyperthermal stress. Mol Ecol 18:5101–5114CrossRefPubMedGoogle Scholar
  53. Rosic NN, Hoegh-Guldberg O (2010) A method for extracting a high-quality RNA from Symbiodinium sp. J Appl Phycol 22:139–146CrossRefGoogle Scholar
  54. Rosic NN, Pernice M, Dunn S, Dove S, Hoegh-Guldberg O (2010a) Novel cytochrome P450 genes from the symbiotic dinoflagellates of reef-building corals: differential regulation by heat stress. Appl Environ Microbiol 76:2823–2829CrossRefPubMedGoogle Scholar
  55. Rosic NN, Pernice M, Rodriguez-Lanetty M, Hoegh-Guldberg O (2010b) Validation of housekeeping genes for gene expression studies in Symbiodinium exposed to thermal and light stress. Marine Biotechnology doi:. doi: 10.1007/s10126-010-9308-9 Google Scholar
  56. Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342CrossRefPubMedGoogle Scholar
  57. Rutherford S, Hirate Y, Swalla BJ (2007) The Hsp90 capacitor, developmental remodeling, and evolution: the robustness of gene networks and the curious evolvability of metamorphosis. Crit Rev Biochem Mol Biol 42:355–372CrossRefPubMedGoogle Scholar
  58. Sangster TA, Salathia N, Lee HN, Watanabe E, Schellenberg K, Morneau K, Wang H, Undurraga S, Queitsch C, Lindquist S (2008) HSP90-buffered genetic variation is common in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:2969–2974CrossRefPubMedGoogle Scholar
  59. Sharp VA, Brown BE, Miller D (1997) Heat shock protein (hsp 70) expression in the tropical reef coral Goniopora djiboutiensis. J Therm Biol 22:11–19CrossRefGoogle Scholar
  60. Sorensen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037CrossRefGoogle Scholar
  61. Takahashi S, Whitney S, Itoh S, Maruyama T, Badger M (2008) Heat stress causes inhibition of the de novo synthesis of antenna proteins and photobleaching in cultured Symbiodinium. Proc Natl Acad Sci USA 105:4203–4208CrossRefPubMedGoogle Scholar
  62. Takahashi S, Whitney SM, Badger MR (2009) Different thermal sensitivity of the repair of photodamaged photosynthetic machinery in cultured Symbiodinium species. Proc Natl Acad Sci USA 106:3237–3242CrossRefPubMedGoogle Scholar
  63. Theodoraki MA, Mintzas AC (2006) cDNA cloning, heat shock regulation and developmental expression of the hsp83 gene in the Mediterranean fruit fly Ceratitis capitata. Ins Mol Biol 15:839–852CrossRefGoogle Scholar
  64. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedGoogle Scholar
  65. Timofeev M, Shatilina Zh M, Bedulina DS, Protopopova MV, Kolesnichenko AV (2008) Application of heat shock proteins as stress markers in aquatic organisms using endemic Baikal amphipods as an example. Prikl Biokhim Mikrobiol 44:343–346PubMedGoogle Scholar
  66. Van Oppen MJH, Gates RD (2006) Conservation genetics and the resilience of reef-building corals. Mol Ecol 15:3863–3883CrossRefPubMedGoogle Scholar
  67. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034. Doi: 10.1186/gb-2002-3-7-research0034Google Scholar
  68. Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbioses in animals. J Exp Bot 59:1069–1080CrossRefPubMedGoogle Scholar
  69. Voolstra CR, Schnetzer J, Peshkin L, Randall CJ, Szmant AM, Medina M (2009) Effects of temperature on gene expression in embryos of the coral Montastraea faveolata. BMC Genomics 10:627CrossRefPubMedGoogle Scholar
  70. Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223CrossRefGoogle Scholar
  71. Walker NJ (2002) Tech. Sight. A technique whose time has come. Science 296:557–559CrossRefPubMedGoogle Scholar
  72. Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066CrossRefPubMedGoogle Scholar
  73. Yamada K, Nishimura M (2008) Cytosolic heat shock protein 90 regulates heat shock transcription factor in Arabidopsis thaliana. Plant Signal Behav 3:660–662PubMedGoogle Scholar
  74. Young JC, Moarefi I, Ulrich Hartl F (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154:267–273CrossRefPubMedGoogle Scholar
  75. Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5:781–791CrossRefPubMedGoogle Scholar
  76. Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480CrossRefPubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2010

Authors and Affiliations

  • Nedeljka N. Rosic
    • 1
  • Mathieu Pernice
    • 1
    • 2
  • Sophie Dove
    • 1
    • 3
  • Simon Dunn
    • 1
    • 3
  • Ove Hoegh-Guldberg
    • 1
    • 3
  1. 1.Global Change InstituteThe University of QueenslandQueenslandAustralia
  2. 2.UMR 7208 “Biologie des ORganismes et Ecosytèmes Aquatiques” MNHN-CNRS-IRD–UPMCParisFrance
  3. 3.ARC Centre of Excellence for Coral Reef StudiesThe University of QueenslandQueenslandAustralia

Personalised recommendations