Advertisement

Cell Stress and Chaperones

, Volume 15, Issue 6, pp 851–863 | Cite as

Inactivation of the hereditary spastic paraplegia-associated Hspd1 gene encoding the Hsp60 chaperone results in early embryonic lethality in mice

  • Jane H. ChristensenEmail author
  • Marit N. Nielsen
  • Jakob Hansen
  • Annette Füchtbauer
  • Ernst-Martin Füchtbauer
  • Mark West
  • Thomas J. Corydon
  • Niels Gregersen
  • Peter Bross
Original Paper

Abstract

The mitochondrial Hsp60 chaperonin plays an important role in sustaining cellular viability. Its dysfunction is related to inherited forms of the human diseases spastic paraplegia and hypomyelinating leukodystrophy. However, it is unknown whether the requirement for Hsp60 is neuron specific or whether a complete loss of the protein will impair mammalian development and postnatal survival. In this study, we describe the generation and characterization of a mutant mouse line bearing an inactivating gene-trap insertion in the Hspd1 gene encoding Hsp60. We found that heterozygous mice were born at the expected ratio compared to wild-type mice and displayed no obvious phenotype deficits. Using quantitative reverse transcription PCR, we found significantly decreased levels of the Hspd1 transcript in all of the tissues examined, demonstrating that the inactivation of the Hspd1 gene is efficient. By Western blot analysis, we found that the amount of Hsp60 protein, compared to either cytosolic tubulin or mitochondrial voltage-dependent anion-selective channel protein 1/porin, was decreased as well. The expression of the nearby Hspe1 gene, which encodes the Hsp10 co-chaperonin, was concomitantly down regulated in the liver, and the protein levels in all tissues except the brain were reduced. Homozygous Hspd1 mutant embryos, however, died shortly after implantation (day 6.5 to 7.5 of gestation, Theiler stages 9–10). Our results demonstrate that Hspd1 is an essential gene for early embryonic development in mice, while reducing the amount of Hsp60 by inactivation of one allele of the gene is compatible with survival to term as well as postnatal life.

Keywords

Chaperonin 60 Chaperonin 10 Embryonic development Gene knockout techniques Insertional mutagenesis, OmniBank® 

Notes

Acknowledgments

The authors thank Birgitte Grann for her excellent technical assistance and Helle Christiansen for checking mice vaginal plugs each morning during the analysis of timed pregnancies. The work was supported by grants from the Ludvig and Sara Elsass Foundation, the Lundbeck Foundation, the EU 6th Framework Program, the Novo Nordisk Foundation, the Augustinus Foundation, “Elvira og Rasmus Riisforts Almenvelgørende Fond” [the Elvira and Rasmus Riisfort’s Common Charitable Foundation], and “Grosserer A.V. Lykfeldt og Hustrus Legat” [the Merchant A.V. Lykfeldt and Wife’s Grant], and Aarhus University.

References

  1. Arya R, Mallik M, Lakhotia SC (2007) Heat shock genes—integrating cell survival and death. J Biosci 32:595–610CrossRefPubMedGoogle Scholar
  2. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366CrossRefPubMedGoogle Scholar
  3. Chandra D, Choy G, Tang DG (2007) Cytosolic accumulation of HSP60 during apoptosis with or without apparent mitochondrial release: evidence that its pro-apoptotic or pro-survival functions involve differential interactions with caspase-3. J Biol Chem 282:31289–31301CrossRefPubMedGoogle Scholar
  4. Cheng MY, Hartl FU, Martin J, Pollock RA, Kalousek F, Neupert W, Hallberg EM, Hallberg RL, Horwich AL (1989) Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337:620–625CrossRefPubMedGoogle Scholar
  5. Deluca GC, Ebers GC, Esiri MM (2004) The extent of axonal loss in the long tracts in hereditary spastic paraplegia. Neuropathol Appl Neurobiol 30:576–584CrossRefPubMedGoogle Scholar
  6. Dumollard R, Duchen M, Sardet C (2006) Calcium signals and mitochondria at fertilisation. Semin Cell Dev Biol 17:314–323CrossRefPubMedGoogle Scholar
  7. Dumollard R, Carroll J, Duchen MR, Campbell K, Swann K (2009) Mitochondrial function and redox state in mammalian embryos. Semin Cell Dev Biol 20:346–353CrossRefPubMedGoogle Scholar
  8. Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, Gudz T, Macklin WB, Lewis DA, Fox RJ, Rudick R, Mirnics K, Trapp BD (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59:478–489CrossRefPubMedGoogle Scholar
  9. Ericsson RJ, Langevin CN, Nishino M (1973) Isolation of fractions rich in human Y sperm. Nature 246:421–424CrossRefPubMedGoogle Scholar
  10. Ferreirinha F, Quattrini A, Pirozzi M, Valsecchi V, Dina G, Broccoli V, Auricchio A, Piemonte F, Tozzi G, Gaeta L, Casari G, Ballabio A, Rugarli EI (2004) Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J Clin Invest 113:231–242PubMedGoogle Scholar
  11. Habich C, Burkart V (2007) Heat shock protein 60: regulatory role on innate immune cells. Cell Mol Life Sci 64:742–751CrossRefPubMedGoogle Scholar
  12. Hansen JJ, Durr A, Cournu-Rebeix I, Georgopoulos C, Ang D, Nielsen MN, Davoine CS, Brice A, Fontaine B, Gregersen N, Bross P (2002) Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 70:1328–1332CrossRefPubMedGoogle Scholar
  13. Hansen JJ, Bross P, Westergaard M, Nielsen MN, Eiberg H, Borglum AD, Mogensen J, Kristiansen K, Bolund L, Gregersen N (2003) Genomic structure of the human mitochondrial chaperonin genes: HSP60 and HSP10 are localised head to head on chromosome 2 separated by a bidirectional promoter. Hum Genet 112:71–77CrossRefPubMedGoogle Scholar
  14. Hansen J, Svenstrup K, Ang D, Nielsen MN, Christensen JH, Gregersen N, Nielsen JE, Georgopoulos C, Bross P (2007) A novel non-synonymous variation in the HSPD1 gene associated with hereditary spastic paraplegia. J Neurol 254:897–900CrossRefPubMedGoogle Scholar
  15. Hansen J, Corydon TJ, Palmfeldt J, Durr A, Fontaine B, Nielsen MN, Christensen JH, Gregersen N, Bross P (2008) Decreased expression of the mitochondrial matrix proteases Lon and ClpP in cells from a patient with hereditary spastic paraplegia (SPG13). Neuroscience 153:474–482CrossRefPubMedGoogle Scholar
  16. Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16:574–581CrossRefPubMedGoogle Scholar
  17. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994CrossRefPubMedGoogle Scholar
  18. Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330–334CrossRefPubMedGoogle Scholar
  19. Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115–145CrossRefPubMedGoogle Scholar
  20. Jansen RP (2000) Germline passage of mitochondria: quantitative considerations and possible embryological sequelae. Hum Reprod 15(Suppl 2):112–128PubMedGoogle Scholar
  21. Johnson MT, Yang HS, Magnuson T, Patel MS (1997) Targeted disruption of the murine dihydrolipoamide dehydrogenase gene (Dld) results in perigastrulation lethality. Proc Natl Acad Sci U S A 94:14512–14517CrossRefPubMedGoogle Scholar
  22. Johnson MT, Mahmood S, Hyatt SL, Yang HS, Soloway PD, Hanson RW, Patel MS (2001) Inactivation of the murine pyruvate dehydrogenase (Pdha1) gene and its effect on early embryonic development. Mol Genet Metab 74:293–302CrossRefPubMedGoogle Scholar
  23. Kasher PR, De Vos KJ, Wharton SB, Manser C, Bennett EJ, Bingley M, Wood JD, Milner R, McDermott CJ, Miller CC, Shaw PJ, Grierson AJ (2009) Direct evidence for axonal transport defects in a novel mouse model of mutant spastin-induced hereditary spastic paraplegia (HSP) and human HSP patients. J Neurochem 110:34–44CrossRefPubMedGoogle Scholar
  24. Kwong JQ, Beal MF, Manfredi G (2006) The role of mitochondria in inherited neurodegenerative diseases. J Neurochem 97:1659–1675CrossRefPubMedGoogle Scholar
  25. Li K, Li Y, Shelton JM, Richardson JA, Spencer E, Chen ZJ, Wang X, Williams RS (2000) Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101:389–399CrossRefPubMedGoogle Scholar
  26. Magen D, Georgopoulos C, Bross P, Ang D, Segev Y, Goldsher D, Nemirovski A, Shahar E, Ravid S, Luder A, Heno B, Gershoni-Baruch R, Skorecki K, Mandel H (2008) Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am J Hum Genet 83:30–42CrossRefPubMedGoogle Scholar
  27. Meinhardt A, Wilhelm B, Seitz J (1999) Expression of mitochondrial marker proteins during spermatogenesis. Hum Reprod Updat 5:108–119CrossRefGoogle Scholar
  28. Narisawa S, Hecht NB, Goldberg E, Boatright KM, Reed JC, Millan JL (2002) Testis-specific cytochrome c-null mice produce functional sperm but undergo early testicular atrophy. Mol Cell Biol 22:5554–5562CrossRefPubMedGoogle Scholar
  29. Perezgasga L, Segovia L, Zurita M (1999) Molecular characterization of the 5′ control region and of two lethal alleles affecting the hsp60 gene in Drosophila melanogaster. FEBS Lett 456:269–273CrossRefPubMedGoogle Scholar
  30. Pockley AG, Muthana M, Calderwood SK (2008) The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 33:71–79PubMedGoogle Scholar
  31. Poulton J, Marchington DR (2002) Segregation of mitochondrial DNA (mtDNA) in human oocytes and in animal models of mtDNA disease: clinical implications. Reproduction 123:751–755CrossRefPubMedGoogle Scholar
  32. Ramalho-Santos J, Varum S, Amaral S, Mota PC, Sousa AP, Amaral A (2009) Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Hum Reprod Updat 15:553–572CrossRefGoogle Scholar
  33. Salinas S, Proukakis C, Crosby A, Warner TT (2008) Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol 7:1127–1138CrossRefPubMedGoogle Scholar
  34. Svenstrup K, Bross P, Koefoed P, Hjermind LE, Eiberg H, Born AP, Vissing J, Gyllenborg J, Norremolle A, Hasholt L, Nielsen JE (2009) Sequence variants in SPAST, SPG3A and HSPD1 in hereditary spastic paraplegia. J Neurol Sci 284:90–95CrossRefPubMedGoogle Scholar
  35. Tarrade A, Fassier C, Courageot S, Charvin D, Vitte J, Peris L, Thorel A, Mouisel E, Fonknechten N, Roblot N, Seilhean D, Dierich A, Hauw JJ, Melki J (2006) A mutation of spastin is responsible for swellings and impairment of transport in a region of axon characterized by changes in microtubule composition. Hum Mol Genet 15:3544–3558CrossRefPubMedGoogle Scholar
  36. Winer J, Jung CK, Shackel I, Williams PM (1999) Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem 270:41–49CrossRefPubMedGoogle Scholar
  37. Zambrowicz BP, Abuin A, Ramirez-Solis R, Richter LJ, Piggott J, BeltrandelRio H, Buxton EC, Edwards J, Finch RA, Friddle CJ, Gupta A, Hansen G, Hu Y, Huang W, Jaing C, Key BW Jr, Kipp P, Kohlhauff B, Ma ZQ, Markesich D, Payne R, Potter DG, Qian N, Shaw J, Schrick J, Shi ZZ, Sparks MJ, Van SI, Vogel P, Walke W, Xu N, Zhu Q, Person C, Sands AT (2003) Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. Proc Natl Acad Sci U S A 100:14109–14114CrossRefPubMedGoogle Scholar
  38. Zhang Z, Carriero N, Gerstein M (2004) Comparative analysis of processed pseudogenes in the mouse and human genomes. Trends Genet 20:62–67CrossRefPubMedGoogle Scholar
  39. Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ (2002) A mitochondrial specific stress response in mammalian cells. EMBO J 21:4411–4419CrossRefPubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2010

Authors and Affiliations

  • Jane H. Christensen
    • 1
    • 4
    Email author
  • Marit N. Nielsen
    • 1
  • Jakob Hansen
    • 1
  • Annette Füchtbauer
    • 2
  • Ernst-Martin Füchtbauer
    • 2
  • Mark West
    • 3
  • Thomas J. Corydon
    • 4
  • Niels Gregersen
    • 1
  • Peter Bross
    • 1
  1. 1.Research Unit for Molecular MedicineAarhus University HospitalSkejbyDenmark
  2. 2.Department of Molecular BiologyAarhus UniversityAarhusDenmark
  3. 3.Institute of AnatomyAarhus UniversityAarhusDenmark
  4. 4.Department of Human GeneticsAarhus UniversityÅrhus CDenmark

Personalised recommendations