Cell Stress and Chaperones

, Volume 15, Issue 5, pp 753–759 | Cite as

Hsp90 modulates CAG repeat instability in human cells

  • David Mittelman
  • Kristen Sykoudis
  • Megan Hersh
  • Yunfu Lin
  • John H. Wilson
Short Communication


The Hsp90 molecular chaperone has been implicated as a contributor to evolution in several organisms by revealing cryptic variation that can yield dramatic phenotypes when the chaperone is diverted from its normal functions by environmental stress. In addition, as a cancer drug target, Hsp90 inhibition has been documented to sensitize cells to DNA-damaging agents, suggesting a function for Hsp90 in DNA repair. Here we explore the potential role of Hsp90 in modulating the stability of nucleotide repeats, which in a number of species, including humans, exert subtle and quantitative consequences for protein function, morphological and behavioral traits, and disease. We report that impairment of Hsp90 in human cells induces contractions of CAG repeat tracks by tenfold. Inhibition of the recombinase Rad51, a downstream target of Hsp90, induces a comparable increase in repeat instability, suggesting that Hsp90-enabled homologous recombination normally functions to stabilize CAG repeat tracts. By contrast, Hsp90 inhibition does not increase the rate of gene-inactivating point mutations. The capacity of Hsp90 to modulate repeat-tract lengths suggests that the chaperone, in addition to exposing cryptic variation, might facilitate the expression of new phenotypes through induction of novel genetic variation.


Hsp90 chaperone Stress-induced mutation Repeat instability Homologous recombination 


  1. Arlander SJ, Eapen AK, Vroman BT, McDonald RJ, Toft DO, Karnitz LM (2003) Hsp90 inhibition depletes Chk1 and sensitizes tumor cells to replication stress. J Biol Chem 278:52572–52577CrossRefPubMedGoogle Scholar
  2. Banerji U (2009) Heat shock protein 90 as a drug target: some like it hot. Clin Cancer Res 15:9–14CrossRefPubMedGoogle Scholar
  3. Barber RC, Hickenbotham P, Hatch T, Kelly D, Topchiy N, Almeida GM, Jones GD, Johnson GE, Parry JM, Rothkamm K, Dubrova YE (2006) Radiation-induced transgenerational alterations in genome stability and DNA damage. Oncogene 25:7336–7342CrossRefPubMedGoogle Scholar
  4. Camphausen K, Tofilon PJ (2007) Inhibition of Hsp90: a multitarget approach to radiosensitization. Clin Cancer Res 13:4326–4330CrossRefPubMedGoogle Scholar
  5. Chatterjee M, Jain S, Stuhmer T, Andrulis M, Ungethum U, Kuban RJ, Lorentz H, Bommert K, Topp M, Kramer D, Muller-Hermelink HK, Einsele H, Greiner A, Bargou RC (2007) STAT3 and MAPK signaling maintain overexpression of heat shock proteins 90alpha and beta in multiple myeloma cells, which critically contribute to tumor-cell survival. Blood 109:720–728CrossRefPubMedGoogle Scholar
  6. Citri A, Harari D, Shohat G, Ramakrishnan P, Gan J, Lavi S, Eisenstein M, Kimchi A, Wallach D, Pietrokovski S, Yarden Y (2006) Hsp90 recognizes a common surface on client kinases. J Biol Chem 281:14361–14369CrossRefPubMedGoogle Scholar
  7. Compton SA, Elmore LW, Haydu K, Jackson-Cook CK, Holt SE (2006) Induction of nitric oxide synthase-dependent telomere shortening after functional inhibition of Hsp90 in human tumor cells. Mol Cell Biol 26:1452–1462CrossRefPubMedGoogle Scholar
  8. Cowen LE, Lindquist S (2005) Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309:2185–2189CrossRefPubMedGoogle Scholar
  9. Dote H, Burgan WE, Camphausen K, Tofilon PJ (2006) Inhibition of hsp90 compromises the DNA damage response to radiation. Cancer Res 66:9211–9220CrossRefPubMedGoogle Scholar
  10. Fondon JW III, Garner HR (2004) Molecular origins of rapid and continuous morphological evolution. Proc Natl Acad Sci U S A 101:18058–18063CrossRefPubMedGoogle Scholar
  11. Freeman BC, Yamamoto KR (2002) Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 296:2232–2235CrossRefPubMedGoogle Scholar
  12. Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Lobrich M, Jeggo PA (2008) ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 31:167–177CrossRefPubMedGoogle Scholar
  13. Gorbunova V, Seluanov A, Dion V, Sandor Z, Meservy JL, Wilson JH (2003) Selectable system for monitoring the instability of CTG/CAG triplet repeats in mammalian cells. Mol Cell Biol 23:4485–4493CrossRefPubMedGoogle Scholar
  14. Gorbunova V, Seluanov A, Mittelman D, Wilson JH (2004) Genome-wide demethylation destabilizes CTG⋅CAG trinucleotide repeats in mammalian cells. Hum Mol Genet 13:2979–2989CrossRefPubMedGoogle Scholar
  15. Healy C, Wade M, McMahon A, Williams A, Johnson DA, Parfett C (2006) Flow cytometric detection of tandem repeat mutations induced by various chemical classes. Mutat Res 598:85–102PubMedGoogle Scholar
  16. Ito M, Yamamoto S, Nimura K, Hiraoka K, Tamai K, Kaneda Y (2005) Rad51 siRNA delivered by HVJ envelope vector enhances the anti-cancer effect of cisplatin. J Gene Med 7:1044–1052CrossRefPubMedGoogle Scholar
  17. Jankowski C, Nasar F, Nag DK (2000) Meiotic instability of CAG repeat tracts occurs by double-strand break repair in yeast. Proc Natl Acad Sci U S A 97:2134–2139CrossRefPubMedGoogle Scholar
  18. Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407–410CrossRefPubMedGoogle Scholar
  19. Ko JC, Hong JH, Wang LH, Lin YW (2008) The role of repair protein Rad51 in synergistic cytotoxicity and mutagenicity induced by epidermal growth factor receptor inhibitor (Gefitinib, IressaR) and benzo[a]pyrene in human lung cancer. Exp Cell Res 314:1881–1891CrossRefPubMedGoogle Scholar
  20. Li CY, Little JB, Hu K, Zhang W, Zhang L, Dewhirst MW, Huang Q (2001) Persistent genetic instability in cancer cells induced by non-DNA-damaging stress exposures. Cancer Res 61:428–432PubMedGoogle Scholar
  21. Lin Y, Wilson JH (2007) Transcription-induced CAG repeat contraction in human cells is mediated in part by transcription-coupled nucleotide excision repair. Mol Cell Biol 27:6209–6217CrossRefPubMedGoogle Scholar
  22. Lin Y, Dion V, Wilson JH (2006) Transcription promotes contraction of CAG repeat tracts in human cells. Nat Struct Mol Biol 13:179–180CrossRefPubMedGoogle Scholar
  23. Lin Y, Dent SY, Wilson JH, Wells RD, Napierala M (2010) R loops stimulate genetic instability of CTG⋅CAG repeats. Proc Natl Acad Sci U S A 107:692–697CrossRefPubMedGoogle Scholar
  24. Meservy JL, Sargent RG, Iyer RR, Chan F, McKenzie GJ, Wells RD, Wilson JH (2003) Long CTG tracts from the myotonic dystrophy gene induce deletions and rearrangements during recombination at the APRT locus in CHO cells. Mol Cell Biol 23:3152–3162CrossRefPubMedGoogle Scholar
  25. Mittelman D, Moye C, Morton J, Sykoudis K, Lin Y, Carroll D, Wilson JH (2009) Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells. Proc Natl Acad Sci U S A 106:9607–9612CrossRefPubMedGoogle Scholar
  26. Nathan DF, Vos MH, Lindquist S (1997) In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc Natl Acad Sci U S A 94:12949–12956CrossRefPubMedGoogle Scholar
  27. Neckers L, Ivy SP (2003) Heat shock protein 90. Curr Opin Oncol 15:419–424CrossRefPubMedGoogle Scholar
  28. Noguchi M, Yu D, Hirayama R, Ninomiya Y, Sekine E, Kubota N, Ando K, Okayasu R (2006) Inhibition of homologous recombination repair in irradiated tumor cells pretreated with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Biochem Biophys Res Commun 351:658–663CrossRefPubMedGoogle Scholar
  29. Palotai R, Szalay MS, Csermely P (2008) Chaperones as integrators of cellular networks: changes of cellular integrity in stress and diseases. IUBMB Life 60:10–18CrossRefPubMedGoogle Scholar
  30. Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404PubMedGoogle Scholar
  31. Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618–624CrossRefPubMedGoogle Scholar
  32. Reuschenbach M, Kloor M, Morak M, Wentzensen N, Germann A, Garbe Y, Tariverdian M, Findeisen P, Neumaier M, Holinski-Feder E, von Knebel Doeberitz M (2009) Serum antibodies against frameshift peptides in microsatellite unstable colorectal cancer patients with Lynch syndrome. Fam Cancer Epub ahead of printGoogle Scholar
  33. Richard GF, Dujon B, Haber JE (1999) Double-strand break repair can lead to high frequencies of deletions within short CAG/CTG trinucleotide repeats. Mol Gen Genet 261:871–882CrossRefPubMedGoogle Scholar
  34. Rodrigue A, Lafrance M, Gauthier MC, McDonald D, Hendzel M, West SC, Jasin M, Masson JY (2006) Interplay between human DNA repair proteins at a unique double-strand break in vivo. EMBO J 25:222–231CrossRefPubMedGoogle Scholar
  35. Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342CrossRefPubMedGoogle Scholar
  36. Rutherford S, Knapp JR, Csermely P (2007) Hsp90 and developmental networks. Adv Exp Med Biol 594:190–197CrossRefPubMedGoogle Scholar
  37. Sangster TA, Salathia N, Undurraga S, Milo R, Schellenberg K, Lindquist S, Queitsch C (2008) HSP90 affects the expression of genetic variation and developmental stability in quantitative traits. Proc Natl Acad Sci U S A 105:2963–2968CrossRefPubMedGoogle Scholar
  38. Sculley DG, Dawson PA, Emmerson BT, Gordon RB (1992) A review of the molecular basis of hypoxanthine–guanine phosphoribosyltransferase (HPRT) deficiency. Hum Genet 90:195–207CrossRefPubMedGoogle Scholar
  39. Sigurdsson S, Van Komen S, Bussen W, Schild D, Albala JS, Sung P (2001) Mediator function of the human Rad51B–Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange. Genes Dev 15:3308–3318CrossRefPubMedGoogle Scholar
  40. Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J, Helleday T (2005) The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol 7:195–201CrossRefPubMedGoogle Scholar
  41. Specchia V, Piacentini L, Tritto P, Fanti L, D'Alessandro R, Palumbo G, Pimpinelli S, Bozzetti MP (2010) Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature 463:662–665CrossRefPubMedGoogle Scholar
  42. Sreedhar AS, Kalmar E, Csermely P, Shen YF (2004) Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett 562:11–15CrossRefPubMedGoogle Scholar
  43. Vamvakopoulos NO (1993) Tissue-specific expression of heat shock proteins 70 and 90: potential implication for differential sensitivity of tissues to glucocorticoids. Mol Cell Endocrinol 98:49–54CrossRefPubMedGoogle Scholar
  44. Vinces MD, Legendre M, Caldara M, Hagihara M, Verstrepen KJ (2009) Unstable tandem repeats in promoters confer transcriptional evolvability. Science 324:1213–1216CrossRefPubMedGoogle Scholar
  45. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772CrossRefPubMedGoogle Scholar
  46. Yamashita T, Oda T, Sekimoto T (2007) Hsp90 and the Fanconi anemia pathway: a molecular link between protein quality control and the DNA damage response. Cell Cycle 6:2232–2235PubMedGoogle Scholar
  47. Yao Q, Weigel B, Kersey J (2007) Synergism between etoposide and 17-AAG in leukemia cells: critical roles for Hsp90, FLT3, topoisomerase II, Chk1, and Rad51. Clin Cancer Res 13:1591–1600CrossRefPubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2010

Authors and Affiliations

  • David Mittelman
    • 1
    • 2
  • Kristen Sykoudis
    • 3
  • Megan Hersh
    • 3
  • Yunfu Lin
    • 3
  • John H. Wilson
    • 2
    • 3
  1. 1.Human Genome Sequencing CenterBaylor College of MedicineHoustonUSA
  2. 2.Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA
  3. 3.Verna and Marrs McLean Department of Biochemistry and Molecular BiologyBaylor College of MedicineHoustonUSA

Personalised recommendations