Cell Stress and Chaperones

, Volume 15, Issue 5, pp 619–629 | Cite as

Ero1α requires oxidizing and normoxic conditions to localize to the mitochondria-associated membrane (MAM)

  • Susanna Y. Gilady
  • Michael Bui
  • Emily M. Lynes
  • Matthew D. Benson
  • Russell Watts
  • Jean E. Vance
  • Thomas Simmen
Original Paper


Protein secretion from the endoplasmic reticulum (ER) requires the enzymatic activity of chaperones and oxidoreductases that fold polypeptides and form disulfide bonds within newly synthesized proteins. The best-characterized ER redox relay depends on the transfer of oxidizing equivalents from molecular oxygen through ER oxidoreductin 1 (Ero1) and protein disulfide isomerase to nascent polypeptides. The formation of disulfide bonds is, however, not the sole function of ER oxidoreductases, which are also important regulators of ER calcium homeostasis. Given the role of human Ero1α in the regulation of the calcium release by inositol 1,4,5-trisphosphate receptors during the onset of apoptosis, we hypothesized that Ero1α may have a redox-sensitive localization to specific domains of the ER. Our results show that within the ER, Ero1α is almost exclusively found on the mitochondria-associated membrane (MAM). The localization of Ero1α on the MAM is dependent on oxidizing conditions within the ER. Chemical reduction of the ER environment, but not ER stress in general leads to release of Ero1α from the MAM. In addition, the correct localization of Ero1α to the MAM also requires normoxic conditions, but not ongoing oxidative phosphorylation.


Endoplasmic reticulum (ER) Mitochondria Mitochondria-associated membrane (MAM) Oxidative protein folding Ero1α 





Immunoglobulin binding protein/glucose-regulated protein of 78 kDa


ER oxidoreductin 1


Human embryonic kidney


Mitochondria-associated membrane


Phospho-furin acidic cluster sorting protein 2


  1. Anelli T, Alessio M, Mezghrani A, Simmen T, Talamo F, Bachi A, Sitia R (2002) ERp44, a novel endoplasmic reticulum folding assistant of the thioredoxin family. EMBO J 21:835–844CrossRefPubMedGoogle Scholar
  2. Anelli T, Alessio M, Bachi A, Bergamelli L, Bertoli G, Camerini S, Mezghrani A, Ruffato E, Simmen T, Sitia R (2003) Thiol-mediated protein retention in the endoplasmic reticulum: the role of ERp44. EMBO J 22:5015–5022CrossRefPubMedGoogle Scholar
  3. Benham AM, Cabibbo A, Fassio A, Bulleid N, Sitia R, Braakman I (2000) The CXXCXXC motif determines the folding, structure and stability of human Ero1-L alpha. Embo J 19:4493–4502CrossRefPubMedGoogle Scholar
  4. Cabibbo A, Pagani M, Fabbri M, Rocchi M, Farmery MR, Bulleid NJ, Sitia R (2000) ERO1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum. J Biol Chem 275:4827–4833CrossRefPubMedGoogle Scholar
  5. Camacho P, Lechleiter JD (1995) Calreticulin inhibits repetitive intracellular Ca2+ waves. Cell 82:765–771CrossRefPubMedGoogle Scholar
  6. Caramelo JJ, Parodi AJ (2008) Getting in and out from calnexin/calreticulin cycles. J Biol Chem 283:10221–10225CrossRefPubMedGoogle Scholar
  7. Csordas G, Thomas AP, Hajnoczky G (1999) Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. Embo J 18:96–108CrossRefPubMedGoogle Scholar
  8. Dias-Gunasekara S, Gubbens J, van Lith M, Dunne C, Williams JA, Kataky R, Scoones D, Lapthorn A, Bulleid NJ, Benham AM (2005) Tissue-specific expression and dimerization of the endoplasmic reticulum oxidoreductase Ero1beta. J Biol Chem 280:33066–33075CrossRefPubMedGoogle Scholar
  9. Dias-Gunasekara S, van Lith M, Williams JA, Kataky R, Benham AM (2006) Mutations in the FAD binding domain cause stress-induced misoxidation of the endoplasmic reticulum oxidoreductase Ero1beta. J Biol Chem 281:25018–25025CrossRefPubMedGoogle Scholar
  10. Fassio A, Sitia R (2002) Formation, isomerisation and reduction of disulphide bonds during protein quality control in the endoplasmic reticulum. Histochem Cell Biol 117:151–157CrossRefPubMedGoogle Scholar
  11. Freedman RB, Klappa P, Ruddock LW (2002) Model peptide substrates and ligands in analysis of action of mammalian protein disulfide-isomerase. Methods Enzymol 348:342–354CrossRefPubMedGoogle Scholar
  12. Gess B, Hofbauer KH, Wenger RH, Lohaus C, Meyer HE, Kurtz A (2003) The cellular oxygen tension regulates expression of the endoplasmic oxidoreductase ERO1-Lalpha. Eur J Biochem 270:2228–2235CrossRefPubMedGoogle Scholar
  13. Gething MJ (1999) Role and regulation of the ER chaperone BiP. Semin Cell Dev Biol 10:465–472CrossRefPubMedGoogle Scholar
  14. Hajnoczky G, Csordas G, Madesh M, Pacher P (2000) The machinery of local Ca2+ signalling between sarco-endoplasmic reticulum and mitochondria. J Physiol 529(Pt 1):69–81CrossRefPubMedGoogle Scholar
  15. Hammond C, Helenius A (1994) Folding of VSV G protein: sequential interaction with BiP and calnexin. Science 266:456–458CrossRefPubMedGoogle Scholar
  16. Hayashi T, Rizzuto R, Hajnoczky G, Su TP (2009) MAM: more than just a housekeeper. Trends Cell Biol 19:81–88CrossRefPubMedGoogle Scholar
  17. Higo T, Hattori M, Nakamura T, Natsume T, Michikawa T, Mikoshiba K (2005) Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Cell 120:85–98CrossRefPubMedGoogle Scholar
  18. Horibe T, Gomi M, Iguchi D, Ito H, Kitamura Y, Masuoka T, Tsujimoto I, Kimura T, Kikuchi M (2004) Different contributions of the three CXXC motifs of human protein-disulfide isomerase-related protein to isomerase activity and oxidative refolding. J Biol Chem 279:4604–4611CrossRefPubMedGoogle Scholar
  19. John LM, Lechleiter JD, Camacho P (1998) Differential modulation of SERCA2 isoforms by calreticulin. J Cell Biol 142:963–973CrossRefPubMedGoogle Scholar
  20. Kim PS, Bole D, Arvan P (1992) Transient aggregation of nascent thyroglobulin in the endoplasmic reticulum: relationship to the molecular chaperone, BiP. J Cell Biol 118:541–549CrossRefPubMedGoogle Scholar
  21. Klappa P, Hawkins HC, Freedman RB (1997) Interactions between protein disulphide isomerase and peptides. Eur J Biochem 248:37–42CrossRefPubMedGoogle Scholar
  22. Li G, Mongillo M, Chin KT, Harding H, Ron D, Marks AR, Tabas I (2009) Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J Cell Biol 186:783–792CrossRefPubMedGoogle Scholar
  23. May D, Itin A, Gal O, Kalinski H, Feinstein E, Keshet E (2005) Ero1-L alpha plays a key role in a HIF-1-mediated pathway to improve disulfide bond formation and VEGF secretion under hypoxia: implication for cancer. Oncogene 24:1011–1020CrossRefPubMedGoogle Scholar
  24. Mendes CC, Gomes DA, Thompson M, Souto NC, Goes TS, Goes AM, Rodrigues MA, Gomez MV, Nathanson MH, Leite MF (2005) The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria. J Biol Chem 280:40892–40900CrossRefPubMedGoogle Scholar
  25. Mezghrani A, Fassio A, Benham A, Simmen T, Braakman I, Sitia R (2001) Manipulation of oxidative protein folding and PDI redox state in mammalian cells. EMBO J 20:6288–6296CrossRefPubMedGoogle Scholar
  26. Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M (2009) Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 417:651–666CrossRefPubMedGoogle Scholar
  27. Molinari M, Eriksson KK, Calanca V, Galli C, Cresswell P, Michalak M, Helenius A (2004) Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. Mol Cell 13:125–135CrossRefPubMedGoogle Scholar
  28. Myhill N, Lynes EM, Nanji JA, Blagoveshchenskaya AD, Fei H, Carmine Simmen K, Cooper TJ, Thomas G, Simmen T (2008) The subcellular distribution of calnexin is mediated by PACS-2. Mol Biol Cell 19:2777–2788CrossRefPubMedGoogle Scholar
  29. Onda Y, Kumamaru T, Kawagoe Y (2009) ER membrane-localized oxidoreductase Ero1 is required for disulfide bond formation in the rice endosperm. Proc Natl Acad Sci USA 106:14156–14161CrossRefPubMedGoogle Scholar
  30. Otsu M, Bertoli G, Fagioli C, Guerini-Rocco E, Nerini-Molteni S, Ruffato E, Sitia R (2006) Dynamic retention of Ero1alpha and Ero1beta in the endoplasmic reticulum by interactions with PDI and ERp44. Antioxid Redox Signal 8:274–282CrossRefPubMedGoogle Scholar
  31. Pagani M, Fabbri M, Benedetti C, Fassio A, Pilati S, Bulleid NJ, Cabibbo A, Sitia R (2000) Endoplasmic reticulum oxidoreductin 1-lbeta (ERO1-Lbeta), a human gene induced in the course of the unfolded protein response. J Biol Chem 275:23685–23692CrossRefPubMedGoogle Scholar
  32. Pagani M, Pilati S, Bertoli G, Valsasina B, Sitia R (2001) The C-terminal domain of yeast Ero1p mediates membrane localization and is essential for function. FEBS Lett 508:117–120CrossRefPubMedGoogle Scholar
  33. Papp E, Nardai G, Mandl J, Banhegyi G, Csermely P (2005) FAD oxidizes the ERO1-PDI electron transfer chain: the role of membrane integrity. Biochem Biophys Res Commun 338:938–945CrossRefPubMedGoogle Scholar
  34. Registre M, Goetz JG, St Pierre P, Pang H, Lagace M, Bouvier M, Le PU, Nabi IR (2004) The gene product of the gp78/AMFR ubiquitin E3 ligase cDNA is selectively recognized by the 3F3A antibody within a subdomain of the endoplasmic reticulum. Biochem Biophys Res Commun 320:1316–1322CrossRefPubMedGoogle Scholar
  35. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766CrossRefPubMedGoogle Scholar
  36. Roderick HL, Lechleiter JD, Camacho P (2000) Cytosolic phosphorylation of calnexin controls intracellular Ca(2+) oscillations via an interaction with SERCA2b. J Cell Biol 149:1235–1248CrossRefPubMedGoogle Scholar
  37. Roth D, Lynes E, Riemer J, Hansen HG, Althaus N, Simmen T, Ellgaard L (2010) A di-arginine motif contributes to the ER-localization of the type I transmembrane ER oxidoreductase TMX4. Biochem J 425:195–205CrossRefPubMedGoogle Scholar
  38. Rusinol AE, Cui Z, Chen MH, Vance JE (1994) A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J Biol Chem 269:27494–27502PubMedGoogle Scholar
  39. Sano R, Annunziata I, Patterson A, Moshiach S, Gomero E, Opferman J, Forte M, d'Azzo A (2009) GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca(2+)-dependent mitochondrial apoptosis. Mol Cell 36:500–511CrossRefPubMedGoogle Scholar
  40. Sevier CS, Kaiser CA (2008) Ero1 and redox homeostasis in the endoplasmic reticulum. Biochim Biophys Acta 1783:549–556CrossRefPubMedGoogle Scholar
  41. Shiao YJ, Balcerzak B, Vance JE (1998) A mitochondrial membrane protein is required for translocation of phosphatidylserine from mitochondria-associated membranes to mitochondria. Biochem J 331(Pt 1):217–223PubMedGoogle Scholar
  42. Simmen T, Aslan JE, Blagoveshchenskaya AD, Thomas L, Wan L, Xiang Y, Feliciangeli SF, Hung CH, Crump CM, Thomas G (2005) PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J 24:717–729CrossRefPubMedGoogle Scholar
  43. Stone SJ, Vance JE (2000) Phosphatidylserine synthase-1 and -2 are localized to mitochondria-associated membranes. J Biol Chem 275:34534–34540CrossRefPubMedGoogle Scholar
  44. Szalai G, Krishnamurthy R, Hajnoczky G (1999) Apoptosis driven by IP(3)-linked mitochondrial calcium signals. Embo J 18:6349–6361CrossRefPubMedGoogle Scholar
  45. Tu BP, Weissman JS (2002) The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol Cell 10:983–994CrossRefPubMedGoogle Scholar
  46. Voeltz GK, Rolls MM, Rapoport TA (2002) Structural organization of the endoplasmic reticulum. EMBO Rep 3:944–950CrossRefPubMedGoogle Scholar
  47. Walker KW, Gilbert HF (1995) Oxidation of kinetically trapped thiols by protein disulfide isomerase. Biochemistry 34:13642–13650CrossRefPubMedGoogle Scholar
  48. Wang L, Li SJ, Sidhu A, Zhu L, Liang Y, Freedman RB, Wang CC (2009) Reconstitution of human Ero1-L alpha/protein-disulfide isomerase oxidative folding pathway in vitro. Position-dependent differences in role between the a and a' domains of protein-disulfide isomerase. J Biol Chem 284:199–206CrossRefPubMedGoogle Scholar
  49. Wieckowski MR, Giorgi C, Lebiedzinska M, Duszynski J, Pinton P (2009) Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat Protoc 4:1582–1590CrossRefPubMedGoogle Scholar
  50. Yi M, Weaver D, Hajnoczky G (2004) Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol 167:661–672CrossRefPubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2010

Authors and Affiliations

  • Susanna Y. Gilady
    • 1
  • Michael Bui
    • 1
  • Emily M. Lynes
    • 1
  • Matthew D. Benson
    • 1
  • Russell Watts
    • 2
  • Jean E. Vance
    • 2
  • Thomas Simmen
    • 1
  1. 1.Department of Cell BiologyUniversity of AlbertaEdmontonCanada
  2. 2.Group on the Molecular and Cell Biology of Lipids, Department of MedicineUniversity of AlbertaEdmontonCanada

Personalised recommendations