Advertisement

Cell Stress and Chaperones

, Volume 15, Issue 4, pp 443–455 | Cite as

The co-chaperone SGT of Leishmania donovani is essential for the parasite's viability

  • Gabi Ommen
  • Mareike Chrobak
  • Joachim ClosEmail author
Original Paper

Abstract

Molecular chaperone proteins play a pivotal role in the protozoan parasite Leishmania donovani, controlling cell fate and ensuring intracellular survival. In higher eukaryotes, the so-called co-chaperone proteins are required for client protein recognition and proper function of chaperones, among them the small glutamine-rich tetratricopeptide repeat proteins (SGT) which interact with both HSP70 and HSP90 chaperones. An atypical SGT homolog is found in the L. donovani genome, encoding a protein lacking the C-terminal glutamine-rich region, normally typical for SGT family members. The gene is expressed constitutively during the life cycle and is essential for survival and/or growth of the parasites. LdSGT forms large, stable complexes that also include another putative co-chaperone, HSC70 interacting protein (HIP). The gene product forms cytoplasmic clusters, matching the subcellular distribution of HIP and partly that of the major cytoplasmic chaperones, HSP70 and HSP90, reflecting a direct molecular interaction with both chaperones.

Keywords

Leishmania Tetratricopeptide repeat SGT Foldosome complex Co-chaperone 

Notes

Acknowledgements

The authors acknowledge the technical assistance of Dorothea Zander, Manfred Krömer (died 2009), and Stefanie Pflichtbeil. Doreen Gutzke created the pTL.v3-eGFP plasmid. M.C. was a fellow of the Vereinigung der Freunde des Tropeninstituts e.V., Hamburg. We also thank Wai-Lok Yau for the helpful suggestions.

Supplementary material

12192_2009_160_MOESM1_ESM.pdf (91 kb)
Supplementary Fig. 8 Cloning strategy of pTL-LdSGT::eGFP, an expression vector for stable expression of LdSGT::eGFP fusion proteins in Leishmania. The figure illustrates the materials and methods, construction, and preparation of overexpression systems (PDF 91 kb)

References

  1. Andersson LO, Borg H, Mikaelson M (1972) Molecular weight estimations of proteins by electrophoresis in polyacrylamide gels of graded porosity. FEBS Lett 20:199–201CrossRefPubMedGoogle Scholar
  2. Angeletti PC, Walker D, Panganiban AT (2002) Small glutamine-rich protein/viral protein U-binding protein is a novel cochaperone that affects heat shock protein 70 activity. Cell Stress Chaperones 7:258–268CrossRefPubMedGoogle Scholar
  3. Barak E, Amin-Spector S, Gerliak E, Goyard S, Holland N, Zilberstein D (2005) Differentiation of Leishmania donovani in host-free system: analysis of signal perception and response. Mol Biochem Parasitol 141:99–108CrossRefPubMedGoogle Scholar
  4. Barrett MP, Mottram JC, Coombs GH (1999) Recent advances in identifying and validating drug targets in trypanosomes and leishmanias. Trends Microbiol 7:82–88CrossRefPubMedGoogle Scholar
  5. Beverley S (2003) Genetic and genomic approaches to the analysis of Leishmania virulence. In: Marr JJ, Nilsen TW, Komuniecki R (eds) Molecular medical parasitology. Academic, New York, pp 111–122CrossRefGoogle Scholar
  6. Buchanan G, Ricciardelli C, Harris JM, Prescott J, Yu ZC, Jia L, Butler LM, Marshall VR, Scher HI, Gerald WL, Coetzee GA, Tilley WD (2007) Control of androgen receptor signaling in prostate cancer by the cochaperone small glutamine rich tetratricopeptide repeat containing protein alpha. Cancer Res 67:10087–10096CrossRefPubMedGoogle Scholar
  7. Buchner J (1999) Hsp90 & Co.—a holding for folding. Trends Biochem Sci 24:136–141CrossRefPubMedGoogle Scholar
  8. Castilla JJ, Sanchez-Moreno M, Mesa C, Osuna A (1995) Leishmania donovani: in vitro culture and [1H] NMR characterization of amastigote-like forms. Mol Cell Biochem 142:89–97CrossRefPubMedGoogle Scholar
  9. Choudhury K, Zander D, Kube M, Reinhardt R, Clos J (2008) Identification of a Leishmania infantum gene mediating resistance to miltefosine and SbIII. Int J Parasitol 38:1411–1423CrossRefPubMedGoogle Scholar
  10. Clos J (2007) The heat shock response in Leishmania spp. In: Radons J, Multhoff G (eds) Heat shock proteins in biology and disease. Research Signpost, Kerala, pp 421–448Google Scholar
  11. Clos J, Brandau S (1994) pJC20 and pJC40—two high-copy-number vectors for T7 RNA polymerase-dependent expression of recombinant genes in Escherichia coli. Protein Expr Purif 5:133–137CrossRefPubMedGoogle Scholar
  12. Clos J, Krobitsch S (1999) Heat shock as a regular feature of the life cycle of Leishmania parasites. Am Zool 39:848–856Google Scholar
  13. Clos J, Westwood JT, Becker PB, Wilson S, Lambert K, Wu C (1990) Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63(5):1085–1097CrossRefPubMedGoogle Scholar
  14. Doyle PS, Engel JC, Pimenta PF, da Silva PP, Dwyer DM (1991) Leishmania donovani: long-term culture of axenic amastigotes at 37 degrees C. Exp Parasitol 73:326–334CrossRefPubMedGoogle Scholar
  15. Fonte V, Kapulkin V, Taft A, Fluet A, Friedman D, Link CD (2002) Interaction of intracellular beta amyloid peptide with chaperone proteins. Proc Natl Acad Sci USA 99:9439–9444CrossRefPubMedGoogle Scholar
  16. Gupta N, Goyal N, Kumar R, Agrawal AK, Seth PK, Rastogi AK (1996) Membrane characterization of amastigote-like forms of Leishmania donovani. Trop Med Int Health 1:495–502CrossRefPubMedGoogle Scholar
  17. Hoyer C, Zander D, Fleischer S, Schilhabel M, Kroener M, Platzer M, Clos J (2004) A Leishmania donovani gene that confers accelerated recovery from stationary phase growth arrest. Int J Parasitol 34:803–811CrossRefPubMedGoogle Scholar
  18. Hubel A, Krobitsch S, Horauf A, Clos J (1997) Leishmania major Hsp100 is required chiefly in the mammalian stage of the parasite. Mol Cell Biol 17:5987–5995PubMedGoogle Scholar
  19. Jackson SE, Queitsch C, Toft D (2004) Hsp90: from structure to phenotype. Nat Struct Mol Biol 11:1152–1155CrossRefPubMedGoogle Scholar
  20. Johnson JL, Brown C (2009) Plasticity of the Hsp90 chaperone machine in divergent eukaryotic organisms. Cell Stress Chaperones 14:83–94CrossRefPubMedGoogle Scholar
  21. Kelly JM, Das P, Tomás AM (1994) An approach to functional complementation by introduction of large DNA fragments into Trypanosoma cruzi and Leishmania donovani using a cosmid shuttle vector. Mol Biochem Parasitol 65:51–62CrossRefPubMedGoogle Scholar
  22. Krobitsch S, Clos J (1999) A novel role for 100 kD heat shock proteins in the parasite Leishmania donovani. Cell Stress Chaperones 4:191–198CrossRefPubMedGoogle Scholar
  23. Krobitsch S, Brandau S, Hoyer C, Schmetz C, Hübel A, Clos J (1998) Leishmania donovani heat shock protein 100: characterization and function in amastigote stage differentiation. J Biol Chem 273:6488–6494CrossRefPubMedGoogle Scholar
  24. Laban A, Wirth DF (1989) Transfection of Leishmania enriettii and expression of chloramphenicol acetyltransferase gene. Proc Natl Acad Sci USA 86:9119–9123CrossRefPubMedGoogle Scholar
  25. Liou ST, Wang C (2005) Small glutamine-rich tetratricopeptide repeat-containing protein is composed of three structural units with distinct functions. Arch Biochem Biophys 435:253–263CrossRefPubMedGoogle Scholar
  26. Liu FH, Wu SJ, Hu SM, Hsiao CD, Wang C (1999) Specific interaction of the 70-kDa heat shock cognate protein with the tetratricopeptide repeats. J Biol Chem 274:34425–34432CrossRefPubMedGoogle Scholar
  27. Morales MA, Watanabe R, Laurent C, Lenormand P, Rousselle JC, Namane A, Spath GF (2008) Phosphoproteomic analysis of Leishmania donovani pro- and amastigote stages. Proteomics 8:350–363CrossRefPubMedGoogle Scholar
  28. Ommen G, Lorenz S, Clos J (2009) One-step generation of double-allele gene replacement mutants in Leishmania donovani. Int J Parasitol 39:541–546CrossRefPubMedGoogle Scholar
  29. Parsell DA, Lindquist S (1994) Heat shock proteins and stress tolerance. In: Morimoto RI, Tissières A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Plainview, pp 457–494Google Scholar
  30. Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Medicine (Maywood, NJ) 228:111–133Google Scholar
  31. Robinson KA, Beverley SM (2003) Improvements in transfection efficiency and tests of RNA interference (RNAi) approaches in the protozoan parasite Leishmania. Mol Biochem Parasitol 128:217–228CrossRefPubMedGoogle Scholar
  32. Rosenzweig D, Smith D, Opperdoes F, Stern S, Olafson RW, Zilberstein D (2007) Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J 22(2):590–602CrossRefPubMedGoogle Scholar
  33. Saar Y, Ransford A, Waldman E, Mazareb S, Amin-Spector S, Plumblee J, Turco SJ, Zilberstein D (1998) Characterization of developmentally-regulated activities in axenic amastigotes of Leishmania donovani. Mol Biochem Parasitol 95:9–20CrossRefPubMedGoogle Scholar
  34. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory Press, PlainviewGoogle Scholar
  35. Sanchez Y, Lindquist SL (1990) Hsp104 required for induced thermotolerance. Science 248:1112–1115CrossRefPubMedGoogle Scholar
  36. Sanchez Y, Taulien J, Borkovich KA, Lindquist S (1992) Hsp104 is required for tolerance to many forms of stress. EMBO J 11:2357–2364PubMedGoogle Scholar
  37. Schantl JA, Roza M, De Jong AP, Strous GJ (2003) Small glutamine-rich tetratricopeptide repeat-containing protein (SGT) interacts with the ubiquitin-dependent endocytosis (UbE) motif of the growth hormone receptor. Biochem J 373:855–863CrossRefPubMedGoogle Scholar
  38. Scheibel T, Buchner J (1998) The Hsp90 complex—a super-chaperone machine as a novel drug target. Biochem Pharmacol 56:675–682CrossRefPubMedGoogle Scholar
  39. Schlueter A, Wiesgigl M, Hoyer C, Fleischer S, Klaholz L, Schmetz C, Clos J (2000) Expression and subcellular localization of cpn60 protein family members in Leishmania donovani. Biochim Biophys Acta 1491:65–74Google Scholar
  40. Tobaben S, Varoqueaux F, Brose N, Stahl B, Meyer G (2003) A brain-specific isoform of small glutamine-rich tetratricopeptide repeat-containing protein binds to Hsc70 and the cysteine string protein. J Biol Chem 278:38376–38383CrossRefPubMedGoogle Scholar
  41. Wandinger SK, Richter K, Buchner J (2008) The Hsp90 chaperone machinery. J Biol Chem 283:18473–18477CrossRefPubMedGoogle Scholar
  42. Wang H, Shen H, Wang Y, Li Z, Yin H, Zong H, Jiang J, Gu J (2005) Overexpression of small glutamine-rich TPR-containing protein promotes apoptosis in 7721 cells. FEBS Lett 579:1279–1284CrossRefPubMedGoogle Scholar
  43. Webb JR, Campos-Neto A, Skeiky YA, Reed SG (1997) Molecular characterization of the heat-inducible LmSTI1 protein of Leishmania major. Mol Biochem Parasitol 89:179–193CrossRefPubMedGoogle Scholar
  44. Westwood JT, Clos J, Wu C (1991) Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature 353:822–827CrossRefPubMedGoogle Scholar
  45. Wiesgigl M, Clos J (2001) Heat shock protein 90 homeostasis controls stage differentiation in Leishmania donovani. Mol Biol Cell 12:3307–3316PubMedGoogle Scholar
  46. Winnefeld M, Grewenig A, Schnolzer M, Spring H, Knoch TA, Gan EC, Rommelaere J, Cziepluch C (2006) Human SGT interacts with Bag-6/Bat-3/Scythe and cells with reduced levels of either protein display persistence of few misaligned chromosomes and mitotic arrest. Exp Cell Res 312:2500–2514CrossRefPubMedGoogle Scholar
  47. Worrall LJ, Wear MA, Page AP, Walkinshaw MD (2008) Cloning, purification and characterization of the Caenorhabditis elegans small glutamine-rich tetratricopeptide repeat-containing protein. Biochim Biophys Acta 1784:496–503PubMedGoogle Scholar
  48. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119CrossRefPubMedGoogle Scholar
  49. Yin H, Wang H, Zong H, Chen X, Wang Y, Yun X, Wu Y, Wang J, Gu J (2006) SGT, a Hsp90beta binding partner, is accumulated in the nucleus during cell apoptosis. Biochem Biophys Res Commun 343:1153–1158CrossRefPubMedGoogle Scholar
  50. Zilberstein D, Shapira M (1994) The role of pH and temperature in the development of Leishmania parasites. Annu Rev Microbiol 48:449–470CrossRefPubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2009

Authors and Affiliations

  1. 1.Bernhard Nocht Institute for Tropical MedicineHamburgGermany

Personalised recommendations