Cell Stress and Chaperones

, Volume 15, Issue 4, pp 423–430 | Cite as

Stress response in tardigrades: differential gene expression of molecular chaperones

  • Andy Reuner
  • Steffen Hengherr
  • Brahim Mali
  • Frank Förster
  • Detlev Arndt
  • Richard Reinhardt
  • Thomas Dandekar
  • Marcus Frohme
  • Franz Brümmer
  • Ralph O. Schill
Original Paper

Abstract

Semi-terrestrial tardigrades exhibit a remarkable tolerance to desiccation by entering a state called anhydrobiosis. In this state, they show a strong resistance against several kinds of physical extremes. Because of the probable importance of stress proteins during the phases of dehydration and rehydration, the relative abundance of transcripts coding for two α-crystallin heat-shock proteins (Mt-sHsp17.2 and Mt-sHsp19.5), as well for the heat-shock proteins Mt-sHsp10, Mt-Hsp60, Mt-Hsp70 and Mt-Hsp90, were analysed in active and anhydrobiotic tardigrades of the species Milnesium tardigradum. They were also analysed in the transitional stage (I) of dehydration, the transitional stage (II) of rehydration and in heat-shocked specimens. A variable pattern of expression was detected, with most candidates being downregulated. Gene transcripts of one Mt-hsp70 isoform in the transitional stage I and Mt-hsp90 in the anhydrobiotic stage were significantly upregulated. A high gene expression (778.6-fold) was found for the small α-crystallin heat-shock protein gene Mt-sHsp17.2 after heat shock. We discuss the limited role of the stress-gene expression in the transitional stages between the active and anhydrobiotic tardigrades and other mechanisms which allow tardigrades to survive desiccation.

Keywords

Alpha-crystallin protein Anhydrobiosis Cryptobiosis Heat-shock protein Tardigrada Milnesium tardigradum 

Notes

Acknowledgements

The authors wish to thank Eva Roth for maintaining the tardigrade culture. This study is part of the project FUNCRYPTA (0313838A, 0313838B and 0313838E), funded by the German Federal Ministry of Education and Research, BMBF.

References

  1. Alamillo J, Almoguera C, Bartels D, Jordano J (1995) Constitutive expression of small heat shock proteins in vegetative tissues of the resurrection plant Craterostigma plantagineum. Plant Mol Biol 29:1093–1099CrossRefPubMedGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. Bahrndorff S, Tunnacliffe A, Wise MJ, McGee B, Holmstrup M, Loeschcke V (2008) Bioinformatics and protein expression analyses implicate LEA proteins in the drought response of Collembola. J Insect Physiol 55:210–217CrossRefGoogle Scholar
  4. Baumann H (1922) Die Anabiose der Tardigraden. Zool Jahrb Abt Allg Zool Physiol Tiere 45:501–556Google Scholar
  5. Bonato MCM, Silva AM, Gomes SL, Maia JCC, Juliani MH (1987) Differential expression of heat-shock proteins and spontaneous synthesis of HSP70 during the life cycle of Blastocladiella emersonii. Eur J Biochem 163:211–220CrossRefPubMedGoogle Scholar
  6. Chakrabortee S, Boschetti C, Walton LJ, Sarkar S, Rubinsztein DC, Tunnacliffe A (2007) Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. PNAS 104:18073–18078CrossRefPubMedGoogle Scholar
  7. Chen S, Glazer I, Gollop N, Cash P, Argo E, Innes A, Stewart E, Davidson I, Wilson MJ (2006) Proteomic analysis of the entomopathogenic nematode Steinernema feltiae IS-6 IJs under evaporative and osmotic stresses. Mol Biochem Parasitol 145:195–204CrossRefPubMedGoogle Scholar
  8. Cherkasova V, Ayyadevara S, Egilmez N, Reis RS (2000) Diverse Caenorhabditis elegans genes that are upregulated in dauer larvae also show elevated transcript levels in long-lived, aged, or starved adults. J Mol Biol 300:433–448CrossRefPubMedGoogle Scholar
  9. Clegg JS, Jackson SA, Liang P, MacRae TH (1995) Nuclear-cytoplasmic translocations of protein p26 during aerobic-anoxic transitions in embryos of artemia franciscana. Exp Cell Res 219:1–7CrossRefPubMedGoogle Scholar
  10. Crowe LM (2002) Lessons from nature: the role of sugars in anhydrobiosis. Comp Biochem Physiol A Comp Physiol 131:505–513Google Scholar
  11. Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60:73–103CrossRefPubMedGoogle Scholar
  12. de Jonge HJ, Fehrmann RS, de Bont ES, Hofstra RM, Gerbens F, Kamps WA, de Vries EG, van der Zee AG, te Meerman GJ, ter Elst A (2007) Evidence based selection of housekeeping genes. PLoS ONE 2:e898CrossRefPubMedGoogle Scholar
  13. Denlinger DL, Lee RE, Yocum GD, Kukal O (1992) Role of chilling in the acquisition of cold tolerance and the capacitation to express stress proteins in diapausing pharate larvae of the gypsy moth, Lymantria dispar. Arch Insect Biochem Physiol 21:271–280CrossRefGoogle Scholar
  14. Georgopoulos C, Welch WJ (1993) Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9:601–634CrossRefPubMedGoogle Scholar
  15. Gething M-J, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45CrossRefPubMedGoogle Scholar
  16. Gkouvitsas T, Kontogiannatos D, Kourti A (2008) Differential expression of two small Hsps during diapause in the corn stalk borer Sesamia nonagrioides (Lef.). J Insect Physiol 54:1503–1510CrossRefPubMedGoogle Scholar
  17. Goto SG, Kimura MT (2004) Heat-shock-responsive genes are not involved in the adult diapause of Drosophila triauraria. Gene 326:117–122CrossRefPubMedGoogle Scholar
  18. Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157CrossRefPubMedGoogle Scholar
  19. Guzhova I, Krallish I, Khroustalyova G, Margulis B, Rapoport A (2008) Dehydration of yeast: changes in the intracellular content of Hsp70 family proteins. Process Biochem 43:1138–1141CrossRefGoogle Scholar
  20. Haslbeck M (2002) sHsps and their role in the chaperone network. Cell Mol Life Sci 59:1649–1657CrossRefPubMedGoogle Scholar
  21. Hayward SAL, Rinehart JP, Denlinger DL (2004) Desiccation and rehydration elicit distinct heat shock protein transcript responses in flesh fly pupae. J Exp Biol 207:963–971CrossRefPubMedGoogle Scholar
  22. Hengherr S, Brümmer F, Schill RO (2008a) Anhydrobiosis in tardigrades and its effects on longevity traits. J Zool (Lond) 275:216–220 1–5CrossRefGoogle Scholar
  23. Hengherr S, Heyer AG, Köhler H-R, Schill RO (2008b) Trehalose and anhydrobiosis in tardigrades—evidence for divergence in responses to dehydration. FEBS J 275:281–288PubMedGoogle Scholar
  24. Hengherr S, Worland MR, Reuner A, Brümmer F, Schill RO (2009) High temperature tolerance and vitreous states in anhydrobiotic tardigrades. Physiol Biochem Zool 82(6):749–755CrossRefPubMedGoogle Scholar
  25. Horikawa DD, Sakashita T, Katagiri C, Watanabe M, Kikawada T, Nakahara Y, Hamada N, Wada S, Funayama T, Higashi S, Kobayashi Y, Okuda T, Kuwabara M (2006) Radiation tolerance in the tardigrade Milnesium tardigradum. Int J Radiat Biol 82:843–848CrossRefPubMedGoogle Scholar
  26. Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115–145CrossRefPubMedGoogle Scholar
  27. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403CrossRefPubMedGoogle Scholar
  28. Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520PubMedGoogle Scholar
  29. Jönsson KI, Schill RO (2007) Induction of Hsp70 by desiccation, ionising radiation and heat-shock in the eutardigrade Richtersius coronifer. Comp Biochem Physiol B Comp Biochem 146:456–460CrossRefGoogle Scholar
  30. Jönsson KI, Rabbow E, Schill RO, Harms-Ringdahl M, Rettberg P (2008) Tardigrades survive exposure to space in low Earth orbit. Curr Biol 18:R729–R731CrossRefPubMedGoogle Scholar
  31. Keilin D (1959) The Leeuwenhoek lecture. The problem of anabiosis or latent life: history and current concept. Proc R Soc Biol Sci Ser B 150:149–191CrossRefGoogle Scholar
  32. Liang P, Amons R, Clegg JS, MacRae TH (1997a) Molecular characterization of a small heat shock/alpha-crystallin protein in encysted artemia embryos. J Biol Chem 272:19051–19058CrossRefPubMedGoogle Scholar
  33. Liang P, Amons R, Macrae TH, Clegg JS (1997b) Purification, structure and in vitro molecular-chaperone activity of artemia P26, a small heat-shock α-crystallin protein. Eur J Biochem 243:225–232CrossRefPubMedGoogle Scholar
  34. Lopez-Martinez G, Benoit J, Rinehart J, Elnitsky M, Lee R, Denlinger D (2009) Dehydration, rehydration, and overhydration alter patterns of gene expression in the Antarctic midge, Belgica antarctica. J Comp Physiol B Biochem Syst Environ Physiol 179(4):481–491CrossRefGoogle Scholar
  35. MacRae TH (2003) Molecular chaperones, stress resistance and development in Artemia franciscana. Semin Cell Dev Biol 14:251–258CrossRefPubMedGoogle Scholar
  36. McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131:121–135CrossRefPubMedGoogle Scholar
  37. McGee B, Schill RO, Tunnacliffe A (2005) Hydrophilic proteins in invertebrate anhydrobiosis. Annual Meeting of the Society for Integrative and Comparative Biology (SICB), San Diego, USAGoogle Scholar
  38. Pearl LH, Prodromou C, Workman P (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 410:439–453CrossRefPubMedGoogle Scholar
  39. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36CrossRefPubMedGoogle Scholar
  40. Pigoń A, Węglarska B (1955) Rate of metabolism in tardigrades during active life and anabiosis. Nature 176:121–122PubMedGoogle Scholar
  41. Ramløv H, Westh P (1992) Survival of the cryptobiotic eutardigrade Adorybiotus coronifer during cooling to −196°C: effect of cooling rate, trehalose level, and short-term acclimation. Cryobiology 29:125–130CrossRefGoogle Scholar
  42. Ramløv H, Westh P (2001) Cryptobiosis in the eutardigrade Adorybiotus (Richtersius) coronifer: tolerance to alcohols, temperature and de novo protein synthesis. Zool Anz 240:517–523CrossRefGoogle Scholar
  43. Richter K, Buchner J (2001) Hsp90: chaperoning signal transduction. J Cell Physiol 188:281–290CrossRefPubMedGoogle Scholar
  44. Rinehart JP, Li AQ, Yocum GD, Robich RM, Hayward SA, Denlinger DL (2007) Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proc Natl Acad Sci U S A 104:11130–11137CrossRefPubMedGoogle Scholar
  45. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  46. Schill RO, Fritz GB (2008) Desiccation tolerance in embryonic stages of the tardigrade Milnesium tardigradum. J Zool (Lond) 276:103–107CrossRefGoogle Scholar
  47. Schill RO, Steinbrück GHB, Köhler H-R (2004) Stress gene (hsp70) sequences and quantitative expression in Milnesium tardigradum (Tardigrada) during active and cryptobiotic stages. J Exp Biol 207:1607–1613CrossRefPubMedGoogle Scholar
  48. Schill RO, McGee B, Tunnacliffe A (2005). Molecular adaptation to extreme dehydration in tardigrades: Hsp70 gene expression, and putative LEA protein induction during cryptobiosis. International Symposium on the Environmental Physiology of Ectotherms and Plants (ISEPEP), Roskilde, DenmarkGoogle Scholar
  49. Seki K, Toyoshima M (1998) Preserving tardigrades under pressure. Nature 395:853–854CrossRefGoogle Scholar
  50. Sømme L (1996) Anhydrobiosis and cold tolerance in tardigrades. Eur J Entomol 93:349–357Google Scholar
  51. Tammariello SP, Rinehart JP, Denlinger DL (1999) Desiccation elicits heat shock protein transcription in the flesh fly, Sarcophaga crassipalpis, but does not enhance tolerance to high or low temperatures. J Insect Physiol 45:933–938CrossRefPubMedGoogle Scholar
  52. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  53. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P (2005) STRING: known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Res 33:D433–D437CrossRefGoogle Scholar
  54. Willsie JK, Clegg JS (2002) Small heat shock protein p26 associates with nuclear lamins and HSP70 in nuclei and nuclear matrix fractions from stressed cells. J Cell Biochem 84:601–614CrossRefPubMedGoogle Scholar
  55. Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17CrossRefPubMedGoogle Scholar
  56. Yocum GD, Joplin KH, Denlinger DL (1991) Expression of heat shock proteins in response to high and low temperature extremes in diapausing pharate larvae of the gypsy moth, Lymantria dispar. Arch Insect Biochem Physiol 18:239–249CrossRefGoogle Scholar
  57. Yocum GD, Joplin KH, Denlinger DL (1998) Upregulation of a 23 kDa small heat shock protein transcript during pupal diapause in the flesh fly, Sarcophaga crassipalpis. Insect Biochem Mol Biol 28:677–682CrossRefPubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2009

Authors and Affiliations

  • Andy Reuner
    • 1
  • Steffen Hengherr
    • 1
  • Brahim Mali
    • 2
  • Frank Förster
    • 3
  • Detlev Arndt
    • 4
  • Richard Reinhardt
    • 5
  • Thomas Dandekar
    • 3
  • Marcus Frohme
    • 2
  • Franz Brümmer
    • 1
  • Ralph O. Schill
    • 1
  1. 1.Zoology, Biological InstituteUniversität StuttgartStuttgartGermany
  2. 2.Molecular Biology and Functional GenomicsUniversity of Applied Sciences WildauWildauGermany
  3. 3.Department of Bioinformatics, Biocenter, Am HublandUniversity of WürzburgWürzburgGermany
  4. 4.Developmental Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
  5. 5.MPI for Molecular GeneticsBerlin-DahlemGermany

Personalised recommendations