Cell Stress and Chaperones

, Volume 15, Issue 3, pp 309–322 | Cite as

The topical antimicrobial zinc pyrithione is a heat shock response inducer that causes DNA damage and PARP-dependent energy crisis in human skin cells

  • Sarah D. Lamore
  • Christopher M. Cabello
  • Georg T. Wondrak
Original Paper

Abstract

The differentiated epidermis of human skin serves as an essential barrier against environmental insults from physical, chemical, and biological sources. Zinc pyrithione (ZnPT) is an FDA-approved microbicidal agent used worldwide in clinical antiseptic products, over-the-counter topical antimicrobials, and cosmetic consumer products including antidandruff shampoos. Here we demonstrate for the first time that cultured primary human skin keratinocytes and melanocytes display an exquisite vulnerability to nanomolar concentrations of ZnPT resulting in pronounced induction of heat shock response gene expression and impaired genomic integrity. In keratinocytes treated with nanomolar concentrations of ZnPT, expression array analysis revealed massive upregulation of genes encoding heat shock proteins (HSPA6, HSPA1A, HSPB5, HMOX1, HSPA1L, and DNAJA1) further confirmed by immunodetection. Moreover, ZnPT treatment induced rapid depletion of cellular ATP levels and formation of poly(ADP-ribose) polymers. Consistent with an involvement of poly(ADP-ribose) polymerase (PARP) in ZnPT-induced energy crisis, ATP depletion could be antagonized by pharmacological inhibition of PARP. This result was independently confirmed using PARP-1 knockout mouse embryonic fibroblasts that were resistant to ATP depletion and cytotoxicity resulting from ZnPT exposure. In keratinocytes and melanocytes, single-cell gel electrophoresis and flow cytometric detection of γ-H2A.X revealed rapid induction of DNA damage in response to ZnPT detectable before general loss of cell viability occurred through caspase-independent pathways. Combined with earlier experimental evidence that documents penetration of ZnPT through mammalian skin, our findings raise the possibility that this topical antimicrobial may target and compromise keratinocytes and melanocytes in intact human skin.

Keywords

Zinc pyrithione Keratinocyte Melanocyte Comet assay Heat shock response PARP-dependent ATP depletion 

Abbreviations

3-ABA

3-Aminobenzamide

AV

AnnexinV

FITC

Fluorescein isothiocyanate

DTPA

Diethylenetriaminepentaacetic acid

EGR1

Early growth response protein 1

Fpg

Formamidopyrimidine-glycosylase

HEK

Human epidermal keratinocyte

HEM

Human epidermal melanocyte

HO-1

Heme oxygenase 1

HSP

Heat shock protein

MEF

Mouse embryonal fibroblast

NAC

N-Acetyl-l-cysteine

OTC

Over-the-counter

PAR

Poly(ADP-ribose) polymer

PARP

Poly(ADP-ribose) polymerase

PI

Propidium iodide

SDS-PAGE

Sodium dodecylsulfate polyacrylamide gel electrophoresis

ZnPT

Zinc pyrithione

Notes

Acknowledgments

Supported in part by grants from the National Institutes of Health (Award Number R01CA122484 from the National Cancer Institute, ES007091, ES06694, Arizona Cancer Center Support Grant CA023074), NSF (DGE-0114420 to CMC), and the Arizona Science Foundation (to SL). The content is solely the responsibility of the author and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.

References

  1. Bailey P, Arrowsmith C, Darling K, Dexter J, Eklund J, Lane A, Little C, Murray B, Scott A, Williams A, Wilson D (2003) A double-blind randomized vehicle-controlled clinical trial investigating the effect of ZnPTO dose on the scalp vs. antidandruff efficacy and antimycotic activity. Int J Cosmet Sci 25:183–188CrossRefPubMedGoogle Scholar
  2. Barnett BL, Kretschmar HC, Hartman FA (1977) Structural characterization of bis(N-oxopyridine-2-thionato)zinc(II). Inorg Chem 16:1834–1838CrossRefGoogle Scholar
  3. Baudouin C, Charveron M, Tarroux R, Gall Y (2002) Environmental pollutants and skin cancer. Cell Biol Toxicol 18:341–348CrossRefPubMedGoogle Scholar
  4. Bause AS, Lamore SD, Wondrak GT (2009) More than skin deep: the human skin tissue equivalent as an advanced drug discovery tool. Frontiers Drug Design Discov 4:135–161Google Scholar
  5. Brandrup F, Menne T (1985) Zinc pyrithione (zinc omadine) allergy. Contact Dermatitis 12:50CrossRefPubMedGoogle Scholar
  6. Burkle A (2001) Poly(APD-ribosyl)ation, a DNA damage-driven protein modification and regulator of genomic instability. Cancer Lett 163:1–5CrossRefPubMedGoogle Scholar
  7. Cabello CM, Bair WB 3rd, Lamore SD, Ley S, Bause AS, Azimian S, Wondrak GT (2009a) The cinnamon-derived Michael acceptor cinnamic aldehyde impairs melanoma cell proliferation, invasiveness, and tumor growth. Free Radic Biol Med 46:220–231CrossRefPubMedGoogle Scholar
  8. Cabello CM, Bair WB 3rd, Ley S, Lamore SD, Azimian S, Wondrak GT (2009b) The experimental chemotherapeutic N(6)-furfuryladenosine (kinetin-riboside) induces rapid ATP depletion, genotoxic stress, and CDKN1A (p21) upregulation in human cancer cell lines. Biochem Pharmacol 77:1125–1138CrossRefPubMedGoogle Scholar
  9. Cabreiro F, Picot CR, Perichon M, Friguet B, Petropoulos I (2009) Overexpression of methionine sulfoxide reductases A and B2 protects MOLT-4 cells against zinc-induced oxidative stress. Antioxid Redox Signal 11:215–225CrossRefPubMedGoogle Scholar
  10. Chuong CM, Nickoloff BJ, Elias PM, Goldsmith LA, Macher E, Maderson PA, Sundberg JP, Tagami H, Plonka PM, Thestrup-Pederson K, Bernard BA, Schroder JM, Dotto P, Chang CM, Williams ML, Feingold KR, King LE, Kligman AM, Rees JL, Christophers E (2002) What is the ‘true’ function of skin? Exp Dermatol 11:159–187CrossRefPubMedGoogle Scholar
  11. Cohausz O, Blenn C, Malanga M, Althaus FR (2008) The roles of poly(ADP-ribose)-metabolizing enzymes in alkylation-induced cell death. Cell Mol Life Sci 65:644–655CrossRefPubMedGoogle Scholar
  12. Cortese MM, Suschek CV, Wetzel W, Kroncke KD, Kolb-Bachofen V (2008) Zinc protects endothelial cells from hydrogen peroxide via Nrf2-dependent stimulation of glutathione biosynthesis. Free Radic Biol Med 44:2002–2012CrossRefPubMedGoogle Scholar
  13. Dinkova-Kostova AT, Jenkins SN, Fahey JW, Ye L, Wehage SL, Liby KT, Stephenson KK, Wade KL, Talalay P (2006) Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts. Cancer Lett 240:243–252CrossRefPubMedGoogle Scholar
  14. Ethier C, Labelle Y, Poirier GG (2007) PARP-1-induced cell death through inhibition of the MEK/ERK pathway in MNNG-treated HeLa cells. Apoptosis 12:2037–2049CrossRefPubMedGoogle Scholar
  15. Gibson WB, Calvin G (1978) Percutaneous absorption of zinc pyridinethione in monkeys. Toxicol Appl Pharmacol 43:425–437CrossRefPubMedGoogle Scholar
  16. Goka K (1999) Embryotoxicity of zinc pyrithione, an antidandruff chemical, in fish. Environ Res 81:81–83CrossRefPubMedGoogle Scholar
  17. Guthery E, Seal LA, Anderson EL (2005) Zinc pyrithione in alcohol-based products for skin antisepsis: persistence of antimicrobial effects. Am J Infect Control 33:15–22CrossRefPubMedGoogle Scholar
  18. Halliday GM (2005) Activation of molecular adaptation to sunlight—a new approach to photoprotection. J Invest Dermatol 125:xviii–xixCrossRefPubMedGoogle Scholar
  19. Hanasoge S, Ljungman M (2007) H2AX phosphorylation after UV irradiation is triggered by DNA repair intermediates and is mediated by the ATR kinase. Carcinogenesis 28:2298–2304CrossRefPubMedGoogle Scholar
  20. Hatayama T, Asai Y, Wakatsuki T, Kitamura T, Imahara H (1993) Regulation of hsp70 synthesis induced by cupric sulfate and zinc sulfate in thermotolerant HeLa cells. J Biochem 114:592–597PubMedGoogle Scholar
  21. Howes D, Black JG (1975) Comparative percutaneous absorption of pyrithiones. Toxicology 5:209–220CrossRefPubMedGoogle Scholar
  22. Jonak C, Klosner G, Trautinger F (2009) Significance of heat shock proteins in the skin upon UV exposure. Front Biosci 14:4758–4768CrossRefPubMedGoogle Scholar
  23. Jourdan E, Emonet-Piccardi N, Didier C, Beani JC, Favier A, Richard MJ (2002) Effects of cadmium and zinc on solar-simulated light-irradiated cells: potential role of zinc-metallothionein in zinc-induced genoprotection. Arch Biochem Biophys 405:170–177CrossRefPubMedGoogle Scholar
  24. Kehe K, Raithel K, Kreppel H, Jochum M, Worek F, Thiermann H (2008) Inhibition of poly(ADP-ribose) polymerase (PARP) influences the mode of sulfur mustard (SM)-induced cell death in HaCaT cells. Arch Toxicol 82:461–470CrossRefPubMedGoogle Scholar
  25. Kim CH, Kim JH, Moon SJ, Chung KC, Hsu CY, Seo JT, Ahn YS (1999) Pyrithione, a zinc ionophore, inhibits NF-kappaB activation. Biochem Biophys Res Commun 259:505–509CrossRefPubMedGoogle Scholar
  26. Kinner A, Wu W, Staudt C, Iliakis G (2008) Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36:5678–5694CrossRefPubMedGoogle Scholar
  27. Klein C, Creach K, Irintcheva V, Hughes KJ, Blackwell PL, Corbett JA, Baldassare JJ (2006) Zinc induces ERK-dependent cell death through a specific Ras isoform. Apoptosis 11:1933–1944CrossRefPubMedGoogle Scholar
  28. Kullavanijaya P, Lim HW (2005) Photoprotection. J Am Acad Dermatol 52:937–958 quiz 959-962CrossRefPubMedGoogle Scholar
  29. Lee JY, Park J, Kim YH, Kim DH, Kim CG, Koh JY (2000) Induction by synaptic zinc of heat shock protein-70 in hippocampus after kainate seizures. Exp Neurol 161:433–441CrossRefPubMedGoogle Scholar
  30. Leyden JJ, Stewart R, Kligman AM (1979) Updated in vivo methods for evaluating topical antimicrobial agents on human skin. J Invest Dermatol 72:165–170CrossRefPubMedGoogle Scholar
  31. Magda D, Lecane P, Wang Z, Hu W, Thiemann P, Ma X, Dranchak PK, Wang X, Lynch V, Wei W, Csokai V, Hacia JG, Sessler JL (2008) Synthesis and anticancer properties of water-soluble zinc ionophores. Cancer Res 68:5318–5325CrossRefPubMedGoogle Scholar
  32. Mann JJ, Fraker PJ (2005) Zinc pyrithione induces apoptosis and increases expression of Bim. Apoptosis 10:369–379CrossRefPubMedGoogle Scholar
  33. Merwald H, Kokesch C, Klosner G, Matsui M, Trautinger F (2006) Induction of the 72-kilodalton heat shock protein and protection from ultraviolet B-induced cell death in human keratinocytes by repetitive exposure to heat shock or 15-deoxy-delta(12, 14)-prostaglandin J2. Cell Stress Chaperones 11:81–88CrossRefPubMedGoogle Scholar
  34. Meyer-Ficca ML, Meyer RG, Jacobson EL, Jacobson MK (2005) Poly(ADP-ribose) polymerases: managing genome stability. Int J Biochem Cell Biol 37:920–926CrossRefPubMedGoogle Scholar
  35. Moller M, Adam W, Saha-Moller CR, Stopper H (2002) Studies on cytotoxic and genotoxic effects of N-hydroxypyridine-2-thione (Omadine) in L5178Y mouse lymphoma cells. Toxicol Lett 136:77–84CrossRefPubMedGoogle Scholar
  36. Noonan EJ, Place RF, Giardina C, Hightower LE (2007) Hsp70B′ regulation and function. Cell Stress Chaperones 12:219–229CrossRefPubMedGoogle Scholar
  37. Okamoto K, Ito T, Hasegawa A (1967) Percutaneous absorption of zin bis-(2-pyridylthio)-1, 1′-dioxide and residual amounts left on the surface of the skin. Eisei Kagaku 13:323–329Google Scholar
  38. Pierard-Franchimont C, Goffin V, Decroix J, Pierard GE (2002) A multicenter randomized trial of ketoconazole 2% and zinc pyrithione 1% shampoos in severe dandruff and seborrheic dermatitis. Skin Pharmacol Appl Skin Physiol 15:434–441PubMedGoogle Scholar
  39. Pogrebniak A, Schemainda I, Pelka-Fleischer R, Nussler V, Hasmann M (2003) Poly ADP-ribose polymerase (PARP) inhibitors transiently protect leukemia cells from alkylating agent induced cell death by three different effects. Eur J Med Res 8:438–450PubMedGoogle Scholar
  40. Roberts MJ, Wondrak GT, Cervantes-Laurean D, Jacobson MK, Jacobson EL (2003) DNA damage by carbonyl stress in human skin cells. Mutat Res 522:45–56PubMedGoogle Scholar
  41. Rutherford T, Black JG (1969) The use of autoradiography to study the localization of germicides in skin. Br J Dermatol 81:75–86CrossRefGoogle Scholar
  42. Shiokawa D, Tanuma S (1998) Molecular cloning and expression of a cDNA encoding an apoptotic endonuclease DNase gamma. Biochem J 332(Pt 3):713–720PubMedGoogle Scholar
  43. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191CrossRefPubMedGoogle Scholar
  44. Skoulis NP, Barbee SJ, Jacobson-Kram D, Putman DL, San RH (1993) Evaluation of the genotoxic potential of zinc pyrithione in the Salmonella mutagenicity (Ames) assay, CHO/HGPRT gene mutation assay and mouse micronucleus assay. J Appl Toxicol 13:283–289CrossRefPubMedGoogle Scholar
  45. Smegal D, McMahon TF, Aviado D, Montague K, Shamim N, Mostaghimi S [EPA A.D.] (2004) Zinc pyrithione (zinc omadine): AD Risk Assessment for the Reregistration Eligibility Decision (RED) Document; Chemical No. 088002. Case No. 2480. DP Barcode: D308704. ID: EPA-HQ-OPP-2004-0147-0023; www.regulations.gov. 1–51
  46. Snyder FH, Buehler EV, Winek CL (1965) Safety evaluation of zinc 2-pyridinethiol 1-oxide in a shampoo formulation. Toxicol Appl Pharmacol 7:425–437CrossRefPubMedGoogle Scholar
  47. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221CrossRefPubMedGoogle Scholar
  48. Unoshima M, Nishizono A, Takita-Sonoda Y, Iwasaka H, Noguchi T (2001) Effects of zinc acetate on splenocytes of endotoxemic mice: enhanced immune response, reduced apoptosis, and increased expression of heat shock protein 70. J Lab Clin Med 137:28–37CrossRefPubMedGoogle Scholar
  49. Wang ZQ, Auer B, Stingl L, Berghammer H, Haidacher D, Schweiger M, Wagner EF (1995) Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev 9:509–520CrossRefPubMedGoogle Scholar
  50. Wondrak GT (2007a) Let the sun shine in: mechanisms and potential for therapeutics in skin photodamage. Curr Opin Investig Drugs 8:390–400PubMedGoogle Scholar
  51. Wondrak GT (2007b) NQO1-activated phenothiazinium redox cyclers for the targeted bioreductive induction of cancer cell apoptosis. Free Radic Biol Med 43:178–190CrossRefPubMedGoogle Scholar
  52. Wondrak GT, Roberts MJ, Cervantes-Laurean D, Jacobson MK, Jacobson EL (2003) Proteins of the extracellular matrix are sensitizers of photo-oxidative stress in human skin cells. J Invest Dermatol 121:578–586CrossRefPubMedGoogle Scholar
  53. Wondrak GT, Jacobson MK, Jacobson EL (2006) Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection. Photochem Photobiol Sci 5:215–237CrossRefPubMedGoogle Scholar
  54. Wondrak GT, Cabello CM, Villeneuve NF, Zhang S, Ley S, Li Y, Sun Z, Zhang DD (2008) Cinnamoyl-based Nrf2-activators targeting human skin cell photo-oxidative stress. Free Radic Biol Med 45:385–395CrossRefPubMedGoogle Scholar
  55. Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB (2004) Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18:1272–1282CrossRefPubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2009

Authors and Affiliations

  • Sarah D. Lamore
    • 1
  • Christopher M. Cabello
    • 1
  • Georg T. Wondrak
    • 1
    • 2
  1. 1.Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer CenterUniversity of ArizonaTucsonUSA
  2. 2.College of Pharmacy & Arizona Cancer CenterUniversity of ArizonaTucsonUSA

Personalised recommendations