Advertisement

Cell Stress and Chaperones

, Volume 14, Issue 6, pp 649–660 | Cite as

Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna)

  • Melody S. ClarkEmail author
  • Lloyd S. Peck
Original Paper

Abstract

The Antarctic limpet, Nacella concinna, exhibits the classical heat shock response, with up-regulation of duplicated forms of the inducible heat shock protein 70 (HSP70) gene in response to experimental manipulation of seawater temperatures. However, this response only occurs in the laboratory at temperatures well in excess of any experienced in the field. Subsequent environmental sampling of inter-tidal animals also showed up-regulation of these genes, but at temperature thresholds much lower than those required to elicit a response in the laboratory. It was hypothesised that this was a reflection of the complexity of the stresses encountered in the inter-tidal region. Here, we describe a further series of experiments comprising both laboratory manipulation and environmental sampling of N. concinna. We investigate the expression of HSP70 gene family members (HSP70A, HSP70B, GRP78 and HSC70) in response to a further suite of environmental stressors: seasonal and experimental cold, freshwater, desiccation, chronic heat and periodic emersion. Lowered temperatures (−1.9°C and −1.6°C), generally produced a down-regulation of all HSP70 family members, with some up-regulation of HSC70 when emerging from the winter period and increasing sea temperatures. There was no significant response to freshwater immersion. In response to acute and chronic heat treatments plus simulated tidal cycles, the data showed a clear pattern. HSP70A showed a strong but very short-term response to heat whilst the duplicated HSP70B also showed heat to be a trigger, but had a more sustained response to complex stresses. GRP78 expression indicates that it was acting as a generalised stress response under the experimental conditions described here. HSC70 was the major chaperone invoked in response to long-term stresses of varying types. These results provide intriguing clues not only to the complexity of HSP70 gene expression in response to environmental change but also insights into the stress response of a non-model species.

Keywords

Environmental change Chronic stress Acute stress Inter-tidal Macrophysiology 

Notes

Acknowledgements

This paper was produced within the BAS Q4 BIOREACH/BIOFLAME core programmes. The authors would like to thank all members of the Rothera Dive Team for providing samples, to Pete Rothery for statistics advice and Simon Morley for advice and help with the tidal simulation experiment. Overall diving support was provided by the NERC National Facility for Scientific Diving at Oban.

References

  1. Ali KS, Dorgai L, Abraham M, Hermesz E (2003) Tissue- and stressor-specific differential expression of two hsc70 genes in carp. Biochem Biophys Res Commun 307:503–509. doi: 10.1016/S0006-291X(03)01206-3 CrossRefPubMedGoogle Scholar
  2. Barnes DKA, Peck LS (2008) Vulnerability of Antarctic shelf biodiversity to predicted regional warming. Climate Res 37:149–163. doi: 10.3354/cr00760 CrossRefGoogle Scholar
  3. Barnes DKA, Fuentes V, Clarke A, Schloss IR, Wallace MI (2006) Spatial and temporal variation in shallow seawater temperatures around Antarctica. Deep-Sea Res 53:853–865CrossRefGoogle Scholar
  4. Bowden DA, Clarke A, Peck LS, Barnes DKA (2006) Antarctic sessile marine benthos: colonisation and growth on artificial substrata over three years. Mar Ecol Prog Ser 316:1–16. doi: 10.3354/meps316001 CrossRefGoogle Scholar
  5. Brown IR (2007) Heat shock proteins and protection of the nervous system. In: Csermely P, Korcsmaros T, Sulyok K (eds) 2nd World Conference on Stress, Budapest, Hungary. Blackwell, Boston, MA, pp 147–158Google Scholar
  6. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo JS, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–511. doi: 10.1038/416507a CrossRefPubMedGoogle Scholar
  7. Clarke A (1988) Seasonality in the Antarctic marine environment. Comp Biochem Physiol B 90:461-473CrossRefGoogle Scholar
  8. Clark MS, Peck LS (2009) HSP70 heat shock proteins and environmental stress in Antarctic marine organisms: a mini-review. Mar Genomics . doi: 10.1016/j.margen.2009.03.003 Google Scholar
  9. Clark MS, Fraser KPP, Peck LS (2008a) Antarctic marine molluscs do have an HSP70 heat shock response. Cell Stress Chaperones 13:39–49. doi: 10.1007/s12192-008-0014-8 CrossRefPubMedGoogle Scholar
  10. Clark MS, Geissler P, Waller C, Fraser KPP, Barnes DKA, Peck LS (2008b) Low heat shock thresholds in wild Antarctic inter-tidal limpets (Nacella concinna). Cell Stress Chaperones 13:51–58. doi: 10.1007/s12192-008-0015-7 CrossRefPubMedGoogle Scholar
  11. Clark MS, Fraser KPP, Burns G, Peck LS (2008c) The HSP70 heat shock response in the Antarctic fish Harpagifer antarcticus. Polar Biol 31:171–180. doi: 10.1007/s00300-007-0344-5 CrossRefGoogle Scholar
  12. Clark MS, Fraser KPP, Peck LS (2008d) Lack of an HSP70 heat shock response in two Antarctic marine invertebrates. Polar Biol 31:1059–1065. doi: 10.1007/s00300-008-0447-7 CrossRefGoogle Scholar
  13. Clarke A, Leakey RJG (1996) The seasonal cycle of phytoplankton, macronutrients, and the microbial community in a nearshore Antarctic marine ecosystem. Limnol Oceanogr 41:1281–1294Google Scholar
  14. Clarke A, Protherothomas E, Whitehouse MJ (1994) Nitrogen-excretion in the Antarctic limpet Nacella-Concinna (Strebel, 1908). J Molluscan Stud 60:141–147. doi: 10.1093/mollus/60.2.141 CrossRefGoogle Scholar
  15. Clarke A, Prothero-Thomas E, Beaumont JC, Chapman AL, Brey T (2004) Growth in the limpet Nacella concinna from contrasting sites in Antarctica. Polar Biol 28:62–71Google Scholar
  16. Davenport J (2001) Meltwater effects on intertidal Antarctic limpets Nacella concinna. JMBA 81:643–649Google Scholar
  17. Dong YW, Miller LP, Sanders JG, Somero GN (2008) Heat-shock protein 70 (Hsp70) expression in four limpets of the genus Lottia: interspecific variation in constitutive and inducible synthesis correlates with in situ exposure to heat stress. Biol Bull 215:173–181PubMedCrossRefGoogle Scholar
  18. Dupont S, Wilson K, Obst M, Sköld H, Nakano H, Thorndyke MC (2007) Marine ecological genomics: when genomics meets marine ecology. Mar Ecol Prog Ser 332:257–273. doi: 10.3354/meps332257 CrossRefGoogle Scholar
  19. Fangue NA, Hofmeister M, Schulte PM (2006) Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. J Expt Biol 209:2859–2872. doi: 10.1242/jeb.02260 CrossRefGoogle Scholar
  20. Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545PubMedGoogle Scholar
  21. Fraser KPP, Clarke A, Peck LS (2002a) Feast and famine in Antarctica: seasonal physiology in the limpet Nacella concinna. Mar Ecol Prog Ser 242:169–177. doi: 10.3354/meps242169 CrossRefGoogle Scholar
  22. Fraser KPP, Clarke A, Peck LS (2002b) Low-temperature protein metabolism: seasonal changes in protein synthesis and RNA dynamics in the Antarctic limpet Nacella concinna Strebel 1908. J Expt Biol 205:3077–3086Google Scholar
  23. Fraser KPP, Clarke A, Peck LS (2007) Growth in the slow lane: protein metabolism in the Antarctic limpet Nacella concinna (Strebel 1908). J Expt Biol 210:2691–2699. doi: 10.1242/jeb.003715 CrossRefGoogle Scholar
  24. Goldfarb SB, Kashlan OB, Watkins JN, Suaud L, Yan WS, Kleyman TR, Rubenstein RC (2006) Differential effects of Hsc70 and Hsp70 on the intracellular trafficking and functional expression of epithelial sodium channels. Proc Natl Acad Sci U S A 103:5817–5822. doi: 10.1073/pnas.0507903103 CrossRefPubMedGoogle Scholar
  25. Gracey AY, Chaney ML, Boomhower JP, Tyburczy WR, Connor K, Somero GN (2008) Rhythms of gene expression in a fluctuating intertidal environment. Curr Biol 18:1501–1507. doi: 10.1016/j.cub.2008.08.049 CrossRefPubMedGoogle Scholar
  26. Halpin PM, Menge BA, Hofmann GE (2004) Experimental demonstration of plasticity in the heat shock response of the intertidal mussel Mytilus californianus. Mar Ecol Prog Ser 276:137–145. doi: 10.3354/meps276137 CrossRefGoogle Scholar
  27. Hargens AR, Shabica SV (1973) Protection against lethal freezing temperatures by mucus in an Antarctic limpet. Cryobiol 10:331–337. doi: 10.1016/0011-2240(73)90052-7 CrossRefGoogle Scholar
  28. Hofmann GE (2005) Patterns of Hsp gene expression in ectothermic marine organisms on small to large biogeographic scales. Integr Comp Biol 45:247–255. doi: 10.1093/icb/45.2.247 CrossRefGoogle Scholar
  29. IPCC (2007) Climate change 2007: synthesis report. In: Pachauri RK, Reisinger A (eds) Contribution of work groups I, II and III to the 4th assessment report of the intergovernmental panel on climate change. IPCC, GenevaGoogle Scholar
  30. Iwama GK, Afonso LOB, Todgham A, Ackerman P, Nakano K (2004) Are hsps suitable for indicating stressed states in fish? J Expt Biol 207:15–19. doi: 10.1242/jeb.00707 CrossRefGoogle Scholar
  31. Korcsmáros T, Kovács IA, Szalay MS, Csermely P (2007) Molecular chaperones: the modular evolution of cellular networks. J Biosci 32:441–446. doi: 10.1007/s12038-007-0043-y CrossRefPubMedGoogle Scholar
  32. Kozutsumi Y, Normington K, Press E, Slaughter C, Sambrook J, Gething MJ (1989) Identification of immunoglobulin heavy-chain binding-protein as glucose-regulated protein-78 on the basis of amino-acid sequence, immunological cross-reactivity, and functional-activity. J Cell Sci Suppl 11:115–137PubMedGoogle Scholar
  33. Laios E, Rebeyka IM, Prody CA (1997) Characterization of cold-induced heat shock protein expression in neonatal rat cardiomyocytes. Mol Cell Biochem 173:153–159. doi: 10.1023/A:1006844114348 CrossRefPubMedGoogle Scholar
  34. Leignel V, Cibois M, Moreau B, Chenais B (2007) Identification of new subgroup of HSP70 in Bythograeidae (hydrothermal crabs) and Xanthidae. Gene 396:84–92. doi: 10.1016/j.gene.2007.02.025 CrossRefPubMedGoogle Scholar
  35. Luan W, Li FH, Zhang JQ, Wang B, Xiang JH (2009) Cloning and expression of glucose regulated protein 78 (GRP78) in Fenneropenaeus chinensis. Mol Biol Rep 36:289–298. doi: 10.1007/s11033-007-9178-z CrossRefPubMedGoogle Scholar
  36. Lund SG, Caissie D, Cunjak RA, Vijayan MM, Tufts BL (2002) The effects of environmental heat stress on heat-shock mRNA and protein expression in Miramichi Atlantic salmon (Salmo salar) parr. Can J Fish Aquat Sci 59:1553–1562. doi: 10.1139/f02-117 CrossRefGoogle Scholar
  37. Malanga G, Estevez MS, Calvo J, Abele D, Puntarulo S (2005) Oxidative stress in gills of limpets from the Beagle Channel: comparison with limpets from the Antarctic. Sci Mar 69:297–304Google Scholar
  38. Menge BA, Branch GM (2001) Rocky intertidal communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer, Sunderland, MA, pp 221–251Google Scholar
  39. Ojima N, Yamashita M, Watabe S (2005) Comparative expression analysis of two paralogous Hsp70s in rainbow trout cells exposed to heat stress. Biochim Biophys Acta 1681:99–106PubMedGoogle Scholar
  40. Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance—degradation and reactivation of damaged proteins. Ann Rev Genet 27:437–496. doi: 10.1146/annurev.ge.27.120193.002253 CrossRefPubMedGoogle Scholar
  41. Peck LS (2002) Ecophysiology of Antarctic marine ectotherms: limits to life. Polar Biol 25:31–40. doi: 10.1007/s003000100308 CrossRefGoogle Scholar
  42. Peck LS, Conway LZ (2000) The myth of metabolic cold adaptation: oxygen consumption in stenothermal Antarctic bivalves. In: Harper EM, Taylor JD, Crame JA (eds) Evolutionary biology of the Bivalvia, special publications 177. Geological Society, London, pp 441–450Google Scholar
  43. Peck LS, Veal R (2001) Feeding, metabolism and growth in the Antarctic limpet, Nacella concinna (Strebel 1908). Mar Biol 138:553–560. doi: 10.1007/s002270000486 CrossRefGoogle Scholar
  44. Peck LS, Prothero-Thomas E, Hough N (1993) Pedal mucus production by the Antarctic limpet Nacella-concinna (Strebel, 1908). J Expt Mar Biol Ecol 174:177–192. doi: 10.1016/0022-0981(93)90016-H CrossRefGoogle Scholar
  45. Peck LS, Baker AC, Conway LZ (1996) Strontium labelling of the shell of the Antarctic limpet Nacella concinna (Strebel, 1908). J Molluscan Stud 62:315–325. doi: 10.1093/mollus/62.3.315 CrossRefGoogle Scholar
  46. Peck LS, Webb KE, Bailey DM (2004) Extreme sensitivity of biological function to temperature in Antarctic marine species. Func Ecol 18:625–630. doi: 10.1111/j.0269-8463.2004.00903.x CrossRefGoogle Scholar
  47. Peck LS, Convey P, Barnes DKA (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev 81:75–109. doi: 10.1017/S1464793105006871 CrossRefPubMedGoogle Scholar
  48. Peck LS, Clark MS, Morley SA, Massey A, Rosetti H (2009) Animal temperature limits: effects of size, activity and rates of change. Func Ecol 23:248–256. doi: 10.1111/j.1365-2435.2008.01537.x CrossRefGoogle Scholar
  49. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:1–10. doi: 10.1093/nar/30.9.e36 CrossRefGoogle Scholar
  50. Place SP, Zippay ML, Hofmann GE (2004) Constitutive roles for inducible genes: evidence for the alteration in expression of the inducible hsp70 gene in Antarctic notothenioid fishes. Am J Physiol Reg Integr Comp Physiol 287:R429–R436. doi: 10.1152/ajpregu.00223.2004 Google Scholar
  51. Place SP, O’Donnell MJ, Hofmann GE (2008) Gene expression in the intertidal mussel Mytilus californianus: physiological response to environmental factors on a biogeographic scale. Mar Ecol Prog Ser 356:1–14. doi: 10.3354/meps07354 CrossRefGoogle Scholar
  52. Podrabsky JE, Somero GN (2004) Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus. J Expt Biol 207:2237–2254. doi: 10.1242/jeb.01016 CrossRefGoogle Scholar
  53. Powell AWB (1951) Antarctic and subanctarctic Mollusca: Pelecypoda and Gastropoda. Discov Rep (USA) 26:49–196Google Scholar
  54. Powell DK, Tyler PA, Peck LS (2001) Effect of sperm concentration and sperm ageing on fertilisation success in the Antarctic soft-shelled clam Laternula elliptica and the Antarctic limpet Nacella concinna. Mar Ecol Prog Ser 215:191–200. doi: 10.3354/meps215191 CrossRefGoogle Scholar
  55. Privalov PL (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25:281–305. doi: 10.3109/10409239009090612 CrossRefPubMedGoogle Scholar
  56. Quinones QJ, de Ridder GG, Pizzo SV (2008) GRP78: a chaperone with diverse roles beyond the endoplasmic reticulum. Histol Histopathol 23:1409–1416PubMedGoogle Scholar
  57. Roberts DA, Hofmann GE, Somero GN (1997) Heat-shock protein expression in Mytilus californianus: acclimatization (seasonal and tidal-height comparisons) and acclimation effects. Biol Bull 192:309–320. doi: 10.2307/1542724 CrossRefGoogle Scholar
  58. Robinson E, Davison W (2008) Antarctic fish can survive prolonged exposure to elevated temperatures. J Fish Biol 73:1676–1689. doi: 10.1111/j.1095-8649.2008.02041.x CrossRefGoogle Scholar
  59. Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342. doi: 10.1038/24550 CrossRefPubMedGoogle Scholar
  60. Somero GN, Devries AL (1967) Temperature tolerance of some Antarctic fishes. Science 156:257–258. doi: 10.1126/science.156.3772.257 CrossRefPubMedGoogle Scholar
  61. Sorensen JG, Loeschcke V (2006) Studying stress responses in the post-genomic era: its ecological and evolutionary role. In: International Symposium on Environmental Factors, Cell Stress and Evolution, Varanasi, India, pp 447–456Google Scholar
  62. Todgham AE, Iwama GK, Schulte PM (2006) Effects of the natural tidal cycle and artificial temperature cycling on Hsp levels in the tidepool sculpin Oligocottus maculosus. Physiol Biochem Zool 79:1033–1045. doi: 10.1086/507664 CrossRefPubMedGoogle Scholar
  63. Walker AJM (1972) Introduction to the Antarctic limpet Patinigera polaris (Hombron and Jacquinot) at Signy Island, South Orkney Islands. Br Antarct Surv Bull 28:49–69Google Scholar
  64. Waller CL, Barnes DKA, Convey P (2006a) Ecological contrasts across an Antarctic land–sea interface. Austral Ecol 31:656–666. doi: 10.1111/j.1442-9993.2006.01618.x CrossRefGoogle Scholar
  65. Waller CL, Worland MR, Convey P, Barnes DKA (2006b) Ecophysiological strategies of Antarctic intertidal invertebrates faced with freezing stress. Polar Biol 29:1077–1083. doi: 10.1007/s00300-006-0152-3 CrossRefGoogle Scholar
  66. Wu R, Sun Y, Lei LM, Xie ST (2008) Molecular identification and expression of heat shock cognate 70 (HSC70) in the Pacific white shrimp Litopenaeus vannamei. Mol Biol 42:234–242. doi: 10.1134/S002689330802009X CrossRefGoogle Scholar
  67. Yokoyama Y, Hashimoto H, Kubota S, Kuriyama A, Ogura Y, Mizuta S, Yoshinaka R, Toyohara H (2006) cDNA cloning of Japanese oyster stress protein homologous to the mammalian 78-kDa glucose regulated protein and its induction by heatshock. Fish Sci 72:402–409. doi: 10.1111/j.1444-2906.2006.01163.x CrossRefGoogle Scholar
  68. Yoon SH, Kim W (2007) 18S ribosomal DNA sequences provide insight into the phylogeny of patellogastropod limpets (Mollusca : Gastropoda). Mol Cell 23:64–71Google Scholar

Copyright information

© Cell Stress Society International 2009

Authors and Affiliations

  1. 1.Biological Sciences Division, British Antarctic SurveyNatural Environment Research CouncilCambridgeUK

Personalised recommendations