Advertisement

Cell Stress and Chaperones

, 14:629 | Cite as

Novel Hsp90 partners discovered using complementary proteomic approaches

  • Pavel A. Tsaytler
  • Jeroen Krijgsveld
  • Soenita S. Goerdayal
  • Stefan Rüdiger
  • Maarten R. Egmond
Original Paper

Abstract

Hsp90 is an essential eukaryotic molecular chaperone that stabilizes a large set of client proteins, many of which are involved in various cellular signaling pathways. The current list of Hsp90 interactors comprises about 200 proteins and this number is growing steadily. In this paper, we report on the application of three complementary proteomic approaches directed towards identification of novel proteins that interact with Hsp90. These methods are coimmunoprecipitation, pull down with biotinylated geldanamycin, and immobilization of Hsp90β on sepharose. In all, this study led to the identification of 42 proteins, including 18 proteins that had not been previously characterized as Hsp90 interactors. These novel Hsp90 partners not only represent abundant protein species, but several proteins were identified at low levels, among which signaling kinase Cdk3 and putative transcription factor tripartite motif-containing protein 29. Identification of tetratricopeptide-repeat-containing mitochondrial import receptor protein Tom34 suggests the involvement of Hsp90 in the early steps of translocation of mitochondrial preproteins. Taken together, our data expand the knowledge of the Hsp90 interactome and provide a further step in our understanding of the Hsp90 chaperone system.

Keywords

Heat shock protein 90 Identification Immobilization Interactome Kinase Partners 

Abbreviations

ACN

acetonitrile

Cdk3

cyclin-dependent kinase 3

CNBr

cyanogen bromide

DSP

Dithiobis[succinimidyl propionate]

GA

geldanamycin

Notes

Acknowledgments

S.R. was supported by a Marie-Curie-Excellent Grant of the EU, a VIDI grant of the Netherlands Organization for Science (NWO), and a High Potential Grant of Utrecht University. The authors thank the Netherlands Proteomics Center for financial support. The authors thank Dimitrios Argyropoulos for his assistance in experimental work.

References

  1. Ali MM, Roe SM, Vaughan CK, Meyer P, Panaretou B, Piper PW, Prodromou C, Pearl LH (2006) Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440:1013–1017. doi: 10.1038/nature04716 CrossRefPubMedGoogle Scholar
  2. Caplan AJ, Mandal AK, Theodoraki MA (2007) Molecular chaperones and protein kinase quality control. Trends Cell Biol 17:87–92. doi: 10.1016/j.tcb.2006.12.002 CrossRefPubMedGoogle Scholar
  3. Chadli A, Felts SJ, Toft DO (2008) GCUNC45 is the first Hsp90 co-chaperone to show alpha/beta isoform specificity. J Biol Chem 283:9509–9512. doi: 10.1074/jbc.C800017200 CrossRefPubMedGoogle Scholar
  4. Citri A, Harari D, Shohat G, Ramakrishnan P, Gan J, Lavi S, Eisenstein M, Kimchi A, Wallach D, Pietrokovski S, Yarden Y (2006) Hsp90 recognizes a common surface on client kinases. J Biol Chem 281:14361–14369. doi: 10.1074/jbc.M512613200 CrossRefPubMedGoogle Scholar
  5. Crevel G, Bennet D, Cotteril S (2008) The human TPR protein TTC4 is a putative Hsp90 co-chaperone which interacts with Cdc6 and shows alterations in transformed cells. PLoS One 3:1–10. doi: 10.1371/journal.pone.0001737 CrossRefGoogle Scholar
  6. Falsone SF, Gesslbauer B, Tirk F, Piccinini A, Kungl AJ (2005) A proteomic snapshot of the human heat shock protein 90 interactome. FEBS Lett 579:6350–6354. doi: 10.1016/j.febslet.2005.10.020 CrossRefPubMedGoogle Scholar
  7. Fan ACY, Bhangoo MK, Young JC (2006) Hsp90 functions in the targeting and outer membrane translocation steps of Tom70-mediated mitochondrial import. J Biol Chem 281:33313–33324. doi: 10.1074/jbc.M605250200 CrossRefPubMedGoogle Scholar
  8. Kosaka Y, Inoue H, Ohmachi T, Yokoe T, Matsumoto T, Minori K, Tanaka F, Watanabe M, Mori M (2007) Tripartite motif-containing 29 (TRIM29) is a novel marker for lymph node metastasis in gastric cancer. Ann Surg Oncol 14:2543–2549. doi: 10.1245/s10434-007-9461-1 CrossRefPubMedGoogle Scholar
  9. Lamphere L, Fiore F, Xu X, Brizuela L, Keezer S, Sardet C, Draetta GF, Gyuris J (1997) Interaction between Cdc37 and Cdk4 in human cells. Oncogene 14:1999–2004. doi: 10.1038/sj.onc.1201036 CrossRefPubMedGoogle Scholar
  10. Lotz GP, Brychzy A, Heinz S, Obermann WM (2008) J Cell Sci 121:717–723. doi: 10.1242/jcs.015610 CrossRefPubMedGoogle Scholar
  11. McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131:121–135. doi: 10.1016/j.cell.2007.07.036 CrossRefPubMedGoogle Scholar
  12. Millson SH, Truman AW, King V, Prodromou C, Pearl LH, Piper PW (2005) A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). Eukar Cell 4:849–860. doi: 10.1128/EC.4.5.849-860.2005 CrossRefGoogle Scholar
  13. Modi S, Stopeck AT, Gordon MS, Mendelson D, Solit DB, Bagatell R, Ma W, Wheler J, Rosen N, Norton L, Cropp GF, Johnson RG, Hannah AL, Hudis CA (2007) Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer: a phase I dose-escalation study. J Clin Oncol 25(Modi, S., Stopeck, A.T., Gordon, M.S., Mendelson, D., Solit, D.B., Bagatell, R., Ma, W., Wheler, J., Rosen, N., Norton, L., Cropp, G.F., Johnson, R.G., Hannah, A.L., and Hudis, C.A):5410–5417. doi: 10.1200/JCO.2007.11.7960 CrossRefPubMedGoogle Scholar
  14. Nisole S, Stoye JP, Saib A (2005) TRIM family proteins: retroviral restriction and antiviral defense. Nat Rev Microbiol 3:799–808. doi: 10.1038/nrmicro1248 CrossRefPubMedGoogle Scholar
  15. Pearl LH, Prodromou C, Workman P (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 410:439–453. doi: 10.1042/BJ20071640 CrossRefPubMedGoogle Scholar
  16. Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by Hsp90/Hsp70-based chaperone machinery. Exp Biol Med 228:11–133Google Scholar
  17. Prince T, Matts RL (2004) Definition of protein kinase sequence that trigger high affinity binding of Hsp90 and Cdc37. J Biol Chem 279:39975–39981. doi: 10.1074/jbc.M406882200 CrossRefPubMedGoogle Scholar
  18. Prince T, Sun L, Matts RL (2006) Cdk2: a genuine protein kinase client of Hsp90 and Cdc37. Biochem 44:15287–15295Google Scholar
  19. Ramalingam SS, Egorin MG, Ramanathan RK, Remick SC, Sikorski RP, Lagattuta TF, Chatta GS, Friedland dM, Stoller RG, Potter DM, Ivy SP, Belani CP (2008) A phase I study of 17-allylamino-17-demethoxygeldanamycin combined with paclitaxel in patients with advanced solid malignancies. Clin Cancer Res 14:3456–3461. doi: 10.1158/1078-0432.CCR-07-5088 CrossRefPubMedGoogle Scholar
  20. Richter K, Muschler P, Hainzl O, Reinstein J, Buchner J (2003) Sti1 is a non-competitive inhibitor of the Hsp90 ATPase. J Biol Chem 278:10328–10333. doi: 10.1074/jbc.M213094200 CrossRefPubMedGoogle Scholar
  21. Roe SM, Ali MMU, Meyer P, Vaughan CK, Panaretou B, Piper PW, Prodromou C, Pearl L (2004) The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50cdc37. Cell 116:87–98. doi: 10.1016/S0092-8674(03)01027-4 CrossRefPubMedGoogle Scholar
  22. Rüdiger S, Freund SM, Verprintsev DB, Fersht AR (2002) CRINEPT-TROSY NMR reveals p53 core domain bound in an unfolded form to the chaperone Hsp90. Proc Natl Acad Sci U S A 99:11085–11090. doi: 10.1073/pnas.132393699 CrossRefPubMedGoogle Scholar
  23. Schlatter H, Langer T, Rosmus S, Onneken ML, Fasold H (2002) A novel function for the Hsp90 kDa heat-shock protein (Hsp90): facilitating nuclear export of 60 S ribosomal subunits. Biochem J 362:675–684. doi: 10.1042/0264-6021:3620675 CrossRefPubMedGoogle Scholar
  24. Schlegel T, Mirus O, von Haeseler A, Schleiff E (2007) The tetratricopeptide repeats of receptors involved in protein translocation across membranes. Mol Biol Evol 24:2763–2774. doi: 10.1093/molbev/msm211 CrossRefPubMedGoogle Scholar
  25. Schumacher JA, Crockett DK, Elenitoba-Johnson KSJ, Lim MS (2007) Proteome-wide changes induced by the Hsp90 inhibitor, geldanamycin in anaplastic large cell lymphoma cells. Proteomics 7:2603–2616. doi: 10.1002/pmic.200700108 CrossRefPubMedGoogle Scholar
  26. Shiau AK, Harris SF, Southworth DR, Agard DA (2006) Structural analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127:329–340. doi: 10.1016/j.cell.2006.09.027 CrossRefPubMedGoogle Scholar
  27. Sreedhar AS, Kalmar E, Csermely P, Shen YF (2004) Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett 562:11–15. doi: 10.1016/S0014-5793(04)00229-7 CrossRefPubMedGoogle Scholar
  28. Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89:239–250. doi: 10.1016/S0092-8674(00)80203-2 CrossRefPubMedGoogle Scholar
  29. Stepanova L, Leng X, Parker SB, Harper JW (1996) Mammalian p50cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Gen Develop 10:1491–1502. doi: 10.1101/gad.10.12.1491 CrossRefGoogle Scholar
  30. Te J, Jia L, Rogers J, Miller A, Hartson SD (2007) Novel subunits of the mammalian Hsp90 signal transduction chaperone. J Prot Res 6:1963–1973. doi: 10.1021/pr060595i CrossRefGoogle Scholar
  31. Terasawa K, Yoshimatsu K, Iemura S, Natsume T, Tanaka K, Minami Y (2006) Cdc37 interacts with the glycine-rich loop of Hsp90 client kinases. Mol Cell Biol 26:3378–3389. doi: 10.1128/MCB.26.9.3378-3389.2006 CrossRefPubMedGoogle Scholar
  32. Vaughan CK, Gohlke U, Sobott F, Good VM, Ali MMU, Prodromou C, Robinson CV, Saibil HR, Pearl LH (2006) Structure of an Hsp90–Cdc37–Cdk4 complex. Mol Cell 23:697–707. doi: 10.1016/j.molcel.2006.07.016 CrossRefPubMedGoogle Scholar
  33. Weinstein IB, Joe AK (2006) Mechanisms of disease: oncogene addiction—a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol 3:448–457. doi: 10.1038/ncponc0558 CrossRefPubMedGoogle Scholar
  34. Picard D (2008) Hsp90 interactors. http://www.picard.ch/downloads/Hsp90interactors.pdf
  35. Yang CS, Weiner H (2002) Yeast two-hybrid screening identifies binding partners of human Tom34 that have ATPase activity and form a complex with Tom34 in the cytosol. Arch Biochem Biophys 400:105–110. doi: 10.1006/abbi.2002.2778 CrossRefPubMedGoogle Scholar
  36. Ye X, Zhu C, Harper JW (2001) A premature-termination mutation in the Mus musculus cyclin-dependent kinase 3 gene. Proc Natl Acad Sci U S A 98:1682–1686. doi: 10.1073/pnas.041596198 CrossRefPubMedGoogle Scholar
  37. Young JC, Obermann WMJ, Hartl FU (1998) Specific binding of tetratricopeptide repeat proteins to the C-terminal 12-kDa domain of Hsp90. J Biol Chem 273:18007–18010. doi: 10.1074/jbc.273.29.18007 CrossRefPubMedGoogle Scholar
  38. Young JC, Hoogenraad NJ, Hartl FU (2003) Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112:41–50. doi: 10.1016/S0092-8674(02)01250-3 CrossRefPubMedGoogle Scholar
  39. Zhao R, Davey M, Hsu Y, Kaplanek P, Tong A, Parsons AB, Krogan N, Cagney G, Mai D, Greenblatt J, Boone C, Emili A, Houry WA (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the Hsp90 chaperone. Cell 120:715–727. doi: 10.1016/j.cell.2004.12.024 CrossRefPubMedGoogle Scholar
  40. Zhao R, Kakihara Y, Gribun A, Huen J, Yang G, Khanna M, Costanzo M, Brost RL, Boone C, Hughes TR, Yip CM, Houry WA (2008) Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. J Cell Biol 180:563–578. doi: 10.1083/jcb.200709061 CrossRefPubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2009

Authors and Affiliations

  • Pavel A. Tsaytler
    • 1
  • Jeroen Krijgsveld
    • 2
  • Soenita S. Goerdayal
    • 2
  • Stefan Rüdiger
    • 3
  • Maarten R. Egmond
    • 1
  1. 1.Department of Membrane Enzymology, Bijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtthe Netherlands
  2. 2.Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtthe Netherlands
  3. 3.Department Cellular Protein Chemistry, Bijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtthe Netherlands

Personalised recommendations