Cell Stress and Chaperones

, Volume 14, Issue 4, pp 427–437 | Cite as

Hsp70 inhibits aminoglycoside-induced hearing loss and cochlear hair cell death

  • Mona Taleb
  • Carlene S. Brandon
  • Fu-Shing Lee
  • Kelly C. Harris
  • Wolfgang H. Dillmann
  • Lisa L. Cunningham
Original Paper

Abstract

Sensory hair cells of the inner ear are sensitive to death from aging, noise trauma, and ototoxic drugs. Ototoxic drugs include the aminoglycoside antibiotics and the antineoplastic agent cisplatin. Exposure to aminoglycosides results in hair cell death that is mediated by specific apoptotic proteins, including c-Jun N-terminal kinase (JNK) and caspases. Induction of heat shock proteins (Hsps) can inhibit JNK- and caspase-dependent apoptosis in a variety of systems. We have previously shown that heat shock results in robust upregulation of Hsps in the hair cells of the adult mouse utricle in vitro. In addition, heat shock results in significant inhibition of both cisplatin- and aminoglycoside-induced hair cell death. In this system, Hsp70 is the most strongly induced Hsp, which is upregulated over 250-fold at the level of mRNA 2 h after heat shock. Hsp70 overexpression inhibits aminoglycoside-induced hair cell death in vitro. In this study, we utilized Hsp70-overexpressing mice to determine whether Hsp70 is protective in vivo. Both Hsp70-overexpressing mice and their wild-type littermates were treated with systemic kanamycin (700 mg/kg body weight) twice daily for 14 days. While kanamycin treatment resulted in significant hearing loss and hair cell death in wild-type mice, Hsp70-overexpressing mice were significantly protected against aminoglycoside-induced hearing loss and hair cell death. These data indicate that Hsp70 is protective against aminoglycoside-induced ototoxicity in vivo.

Keywords

Cochlea Hearing loss Ototoxicity Aminoglycoside Kanamycin Hair cell 

References

  1. Anckar J, Sistonen L (2007) Heat shock factor 1 as a coordinator of stress and developmental pathways. Adv Exp Med Biol 594:78–88. doi:10.1007/978-0-387-39975-1_8 PubMedCrossRefGoogle Scholar
  2. Aran JM (1995) Current perspectives on inner ear toxicity. Otolaryngol Head Neck Surg 112:133–144. doi:10.1016/S0194-5998(95)70313-6 PubMedCrossRefGoogle Scholar
  3. Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475. doi:10.1038/35019501 PubMedCrossRefGoogle Scholar
  4. Chen YR, Tan TH (2000) The c-Jun N-terminal kinase pathway and apoptotic signaling (review). Int J Oncol 16:651–662PubMedGoogle Scholar
  5. Cheng AG, Cunningham LL, Rubel EW (2002) Translocation of cytochrome c in hair cells of gentamicin-treated avian basilar papilla. Abstr Assoc Res Otolaryngol 25:35Google Scholar
  6. Cheng AG, Cunningham LL, Rubel EW (2003) Hair cell death in the avian basilar papilla: characterization of the in vitro model and caspase activation. J Assoc Res Otolaryngol 4:91–105. doi:10.1007/s10162-002-3016-8 PubMedCrossRefGoogle Scholar
  7. Chiu LL, Cunningham LL, Raible DW, Rubel EW, Ou HC (2008) Using the zebrafish lateral line to screen for ototoxicity. J Assoc Res Otolaryngol 9:178–190. doi:10.1007/s10162-008-0118-y PubMedCrossRefGoogle Scholar
  8. Cunningham LL (2006) The adult mouse utricle as an in vitro preparation for studies of ototoxic-drug-induced sensory hair cell death. Brain Res 1091:277–281. doi:10.1016/j.brainres.2006.01.128 PubMedCrossRefGoogle Scholar
  9. Cunningham LL, Brandon CS (2006) Heat shock inhibits both aminoglycoside- and cisplatin-induced sensory hair cell death. J Assoc Res Otolaryngol 7:299–307. doi:10.1007/s10162-006-0043-x PubMedCrossRefGoogle Scholar
  10. Cunningham LL, Cheng AG, Rubel EW (2002) Caspase activation in hair cells of the mouse utricle exposed to neomycin. J Neurosci 22:8532–8540PubMedGoogle Scholar
  11. Dechesne CJ, Kim HN, Nowak TS Jr, Wenthold RJ (1992) Expression of heat shock protein, HSP72, in the guinea pig and rat cochlea after hyperthermia: immunochemical and in situ hybridization analysis. Hear Res 59:195–204. doi:10.1016/0378-5955(92)90116-5 PubMedCrossRefGoogle Scholar
  12. Desai SS, Zeh C, Lysakowski A (2005) Comparative morphology of rodent vestibular periphery. I. Saccular and utricular maculae. J Neurophysiol 93:251–266. doi:10.1152/jn.00746.2003 PubMedCrossRefGoogle Scholar
  13. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Ann Rev Biochem 68:383–424. doi:10.1146/annurev.biochem.68.1.383 PubMedCrossRefGoogle Scholar
  14. Eshraghi AA, Wang J, Adil E, He J, Zine A, Bublik M, Bonny C, Puel JL, Balkany TJ, Van De Water TR (2007) Blocking c-Jun-N-terminal kinase signaling can prevent hearing loss induced by both electrode insertion trauma and neomycin ototoxicity. Hear Res 226:168–177. doi:10.1016/j.heares.2006.09.008 PubMedCrossRefGoogle Scholar
  15. Forge A, Fradis M (1985) Structural abnormalities in the stria vascularis following chronic gentamicin treatment. Hear Res 20:233–244. doi:10.1016/0378-5955(85)90028-0 PubMedCrossRefGoogle Scholar
  16. Forge A, Li L (2000) Apoptotic death of hair cells in mammalian vestibular sensory epithelia. Hear Res 139:97–115. doi:10.1016/S0378-5955(99)00177-X PubMedCrossRefGoogle Scholar
  17. Forge A, Schacht J (2000) Aminoglycoside antibiotics. Audiol Neurootol 5:3–22. doi:10.1159/000013861 PubMedCrossRefGoogle Scholar
  18. Heydt JL, Cunningham LL, Rubel EW, Coltrera MD (2004) Round window gentamicin application: an inner ear hair cell damage protocol for the mouse. Hear Res 192:65–74PubMedCrossRefGoogle Scholar
  19. Hirakawa T, Rokutan K, Nikawa T, Kishi K (1996) Geranylgeranylacetone induces heat shock proteins in cultured guinea pig gastric mucosal cells and rat gastric mucosa. Gastroenterology 111:345–357. doi:10.1053/gast.1996.v111.pm8690199 PubMedCrossRefGoogle Scholar
  20. Jaattela M, Wissing D, Kokholm K, Kallunki T, Egeblad M (1998) Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 17:6124–6134. doi:10.1093/emboj/17.21.6124 PubMedCrossRefGoogle Scholar
  21. Lang H, Liu C (1997) Apoptosis and hair cell degeneration in the vestibular sensory epithelia of the guinea pig following a gentamicin insult. Hear Res 111:177–184. doi:10.1016/S0378-5955(97)00098-1 PubMedCrossRefGoogle Scholar
  22. Li L, Nevill G, Forge A (1995) Two modes of hair cell loss from the vestibular sensory epithelia of the guinea pig inner ear. J comp Neurol 355:405–417. doi:10.1002/cne.903550307 PubMedCrossRefGoogle Scholar
  23. Mangiardi DA, McLaughlin-Williamson K, May KE, Messana EP, Mountain DC, Cotanche DA (2004) Progression of hair cell ejection and molecular markers of apoptosis in the avian cochlea following gentamicin treatment. J Comp Neurol 475:1–18. doi:10.1002/cne.20129 PubMedCrossRefGoogle Scholar
  24. Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH (1995) Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 95:1446–1456. doi:10.1172/JCI117815 PubMedCrossRefGoogle Scholar
  25. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15. doi:10.1002/jcp.10119 PubMedCrossRefGoogle Scholar
  26. Matsui JI, Cotanche DA (2004) Sensory hair cell death and regeneration: two halves of the same equation. Curr Opin Otolaryngol Head Neck Surg 12:418–425. doi:10.1097/01.moo.0000136873.56878.56 PubMedGoogle Scholar
  27. Matsui JI, Ogilvie JM, Warchol ME (2002) Inhibition of caspases prevents ototoxic and ongoing hair cell death. J Neurosci 22:1218–1227PubMedGoogle Scholar
  28. Matsui JI, Haque A, Huss D, Messana EP, Alosi JA, Roberson DW, Cotanche DA, Dickman JD, Warchol ME (2003) Caspase inhibitors promote vestibular hair cell survival and function after aminoglycoside treatment in vivo. J Neurosci 23:6111–6122PubMedGoogle Scholar
  29. Matsui JI, Gale JE, Warchol ME (2004) Critical signaling events during the aminoglycoside-induced death of sensory hair cells in vitro. J Neurobiol 61:250–266. doi:10.1002/neu.20054 PubMedCrossRefGoogle Scholar
  30. McArdle A, Dillmann WH, Mestril R, Faulkner JA, Jackson MJ (2004) Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction. FASEB J 18:355–357PubMedGoogle Scholar
  31. Mikuriya T, Sugahara K, Takemoto T, Tanaka K, Takeno K, Shimogori H, Nakai A, Yamashita H (2005) Geranylgeranylacetone, a heat shock protein inducer, prevents acoustic injury in the guinea pig. Brain Res 1065:107–114. doi:10.1016/j.brainres.2005.10.045 PubMedCrossRefGoogle Scholar
  32. Miyake K, Tsukui T, Shinji Y, Shinoki K, Hiratsuka T, Nishigaki H, Futagami S, Wada K, Gudis K, Iwakiri K, Yamada N, Sakamoto C (2004) Teprenone, but not H2-receptor blocker or sucralfate, suppresses corpus Helicobacter pylori colonization and gastritis in humans: teprenone inhibition of H. pylori-induced interleukin-8 in MKN28 gastric epithelial cell lines. Helicobacter 9:130–137. doi:10.1111/j.1083-4389.2004.00209.x PubMedCrossRefGoogle Scholar
  33. Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22:1427–1438. doi:10.1101/gad.1657108 PubMedCrossRefGoogle Scholar
  34. Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B (1997) Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 17:5317–5327PubMedGoogle Scholar
  35. Nagasawa Y, Tatsuta M, Iishi H, Ishiguro S (1998) Prevention of gastric ulcer recurrence with tetraprenylacetone. Scand J of Gastroenterol 33:44–48. doi:10.1080/00365529850166194 CrossRefGoogle Scholar
  36. Nakagawa T, Yamane H, Takayama M, Sunami K, Nakai Y (1998) Apoptosis of guinea pig cochlear hair cells following chronic aminoglycoside treatment. Eur Arch Otorhinolaryngol 255:127–131. doi:10.1007/s004050050027 PubMedCrossRefGoogle Scholar
  37. Oda H, Miyake H, Iwata T, Kusumoto K, Rokutan K, Tashiro S (2002) Geranylgeranylacetone suppresses inflammatory responses and improves survival after massive hepatectomy in rats. J Gastrointest Surg 6:464–472 discussion 473 doi:10.1016/S1091-255X(01)00043-9 PubMedCrossRefGoogle Scholar
  38. Ooie T, Takahashi N, Saikawa T, Nawata T, Arikawa M, Yamanaka K, Hara M, Shimada T, Sakata T (2001) Single oral dose of geranylgeranylacetone induces heat-shock protein 72 and renders protection against ischemia/reperfusion injury in rat heart. Circulation 104:1837–1843. doi:10.1161/hc3901.095771 PubMedCrossRefGoogle Scholar
  39. Pirvola U, Xing-Qun L, Virkkala J, Saarma M, Murakata C, Camoratto AM, Walton KM, Ylikoski J (2000) Rescue of hearing, auditory hair cells, and neurons by CEP-1347/KT7515, an inhibitor of c-Jun N-terminal kinase activation. J Neurosci 20:43–50PubMedGoogle Scholar
  40. Qian Y, Si JM, Wu JG, Chen SJ, Zhu YF, Sun KK, Deng YY, Chen K, Wang LJ, Liu WL (2007) [Effect of mucosal protective on the quality of gastric ulcer healing]. Zhejiang Da Xue Xue Bao Yi Xue Ban = J Zhejiang Univ 36:71–77Google Scholar
  41. Sano H, Yoneda S, Iwase H, Itoh A, Hashimoto D, Okamoto M (2007) Effect of geranylgeranylacetone on gentamycin ototoxicity in rat cochlea culture. Auris Nasus Larynx 34:1–4. doi:10.1016/j.anl.2006.05.020 PubMedCrossRefGoogle Scholar
  42. Sha SH, Taylor R, Forge A, Schacht J (2001) Differential vulnerability of basal and apical hair cells is based on intrinsic susceptibility to free radicals. Hear Res 155:1–8. doi:10.1016/S0378-5955(01)00224-6 PubMedCrossRefGoogle Scholar
  43. Shirakabe H, Takemoto T, Kobayashi K, Ogoshi K, Kimura K, Nakamura K, Watanabe H (1995) Clinical evaluation of teprenone, a mucosal protective agent, in the treatment of patients with gastric ulcers: a nationwide, multicenter clinical study. Clin Ther 17:924–935. doi:10.1016/0149-2918(95)80070-0 PubMedCrossRefGoogle Scholar
  44. Sone M, Hayashi H, Yamamoto H, Hoshino T, Mizushima T, Nakashima T (2005) Upregulation of HSP by geranylgeranylacetone protects the cochlear lateral wall from endotoxin-induced inflammation. Hear Res 204:140–146. doi:10.1016/j.heares.2005.01.012 PubMedCrossRefGoogle Scholar
  45. Sugahara K, Inouye S, Izu H, Katoh Y, Katsuki K, Takemoto T, Shimogori H, Yamashita H, Nakai A (2003) Heat shock transcription factor HSF1 is required for survival of sensory hair cells against acoustic overexposure. Hear Res 182:88–96. doi:10.1016/S0378-5955(03)00180-1 PubMedCrossRefGoogle Scholar
  46. Sugahara K, Rubel EW, Cunningham LL (2006) JNK signaling in neomycin-induced vestibular hair cell death. Hear Res 221:128–135. doi:10.1016/j.heares.2006.08.009 PubMedCrossRefGoogle Scholar
  47. Takumida M, Anniko M (2005) Heat shock protein 70 delays gentamicin-induced vestibular hair cell death. Acta Otolaryngol 125:23–28PubMedGoogle Scholar
  48. Taleb M, Brandon CS, Lee FS, Lomax MI, Dillmann WH, Cunningham LL (2008) Hsp70 inhibits aminoglycoside-induced hair cell death and is necessary for the protective effect of heat shock. J Assoc Res Otolaryngol 9(3):277–289PubMedCrossRefGoogle Scholar
  49. Taylor RR, Nevill G, Forge A (2008) Rapid hair cell loss: a mouse model for cochlear lesions. J Assoc Res Otolaryngol 9:44–64. doi:10.1007/s10162-007-0105-8 PubMedCrossRefGoogle Scholar
  50. Tran Ba Huy P, Bernard P, Schacht J (1986) Kinetics of gentamicin uptake and release in the rat. Comparison of inner ear tissues and fluids with other organs. J Clin Invest 77:1492–1500. doi:10.1172/JCI112463 PubMedCrossRefGoogle Scholar
  51. Trott A, West JD, Klaic L, Westerheide SD, Silverman RB, Morimoto RI, Morano KA (2008) Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. Mol Biol Cell 19:1104–1112. doi:10.1091/mbc.E07-10-1004 PubMedCrossRefGoogle Scholar
  52. Tsuchiya D, Hong S, Matsumori Y, Shiina H, Kayama T, Swanson RA, Dillman WH, Liu J, Panter SS, Weinstein PR (2003) Overexpression of rat heat shock protein 70 is associated with reduction of early mitochondrial cytochrome C release and subsequent DNA fragmentation after permanent focal ischemia. J Cereb Blood Flow Metab 23:718–727. doi:10.1097/01.WCB.0000054756.97390.F7 PubMedCrossRefGoogle Scholar
  53. Westerheide SD, Bosman JD, Mbadugha BN, Kawahara TL, Matsumoto G, Kim S, Gu W, Devlin JP, Silverman RB, Morimoto RI (2004) Celastrols as inducers of the heat shock response and cytoprotection. J Biol Chem 279:56053–56060. doi:10.1074/jbc.M409267200 PubMedCrossRefGoogle Scholar
  54. Wu WJ, Sha SH, McLaren JD, Kawamoto K, Raphael Y, Schacht J (2001) Aminoglycoside ototoxicity in adult CBA, C57BL and BALB mice and the Sprague-Dawley rat. Hear Res 158:165–178. doi:10.1016/S0378-5955(01)00303-3 PubMedCrossRefGoogle Scholar
  55. Ylikoski J, Xing-Qun L, Virkkala J, Pirvola U (2002) Blockade of c-Jun N-terminal kinase pathway attenuates gentamicin-induced cochlear and vestibular hair cell death. Hear Res 166:33–43. doi:10.1016/S0378-5955(01)00388-4 PubMedCrossRefGoogle Scholar
  56. Yoshida N, Kristiansen A, Liberman MC (1999) Heat stress and protection from permanent acoustic injury in mice. J Neurosci 19:10116–10124PubMedGoogle Scholar
  57. Zhang YQ, Sarge KD (2007) Celastrol inhibits polyglutamine aggregation and toxicity though induction of the heat shock response. J Mol Med 85:1421–1428. doi:10.1007/s00109-007-0251-9 PubMedCrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2009

Authors and Affiliations

  • Mona Taleb
    • 1
  • Carlene S. Brandon
    • 1
  • Fu-Shing Lee
    • 2
  • Kelly C. Harris
    • 2
  • Wolfgang H. Dillmann
    • 3
  • Lisa L. Cunningham
    • 1
  1. 1.Department of Pathology and Laboratory MedicineMedical University of South CarolinaCharlestonUSA
  2. 2.Department of Otolaryngology–Head and Neck SurgeryMedical University of South CarolinaCharlestonUSA
  3. 3.Department of Endocrinology, School of MedicineUniversity of California, San DiegoLa JollaUSA

Personalised recommendations