Cell Stress and Chaperones

, Volume 14, Issue 4, pp 391–406 | Cite as

Hsp70 translocates to the nuclei and nucleoli, binds to XRCC1 and PARP-1, and protects HeLa cells from single-strand DNA breaks

  • Polychronis Kotoglou
  • Alexandros Kalaitzakis
  • Patra Vezyraki
  • Theodore Tzavaras
  • Lampros K. Michalis
  • Francoise Dantzer
  • Jae U. Jung
  • Charalampos Angelidis
Original Paper


For many years, there has been uncertainty concerning the reason for Hsp70 translocation to the nucleus and nucleolus. Herein, we propose that Hsp70 translocates to the nucleus and nucleoli in order to participate in pathways related to the protection of the nucleoplasmic DNA or ribosomal DNA from single-strand breaks. The absence of Hsp70 in HeLa cells, via Hsp70 gene silencing (knockdown), indicated the essential role of Hsp70 in DNA integrity. Therefore, HeLa Hsp70 depleted cells were very sensitive in heat treatment and their DNA breaks were multiple compared to that of control HeLa cells. The molecular mechanism with which Hsp70 performs its role at the level of nucleus and nucleolus during stress was examined. Hsp70 co-localizes with PARP1 in the nucleus/nucleoli as was observed in confocal studies and binds to the BCRT domain of PARP1 as was revealed with protein–protein interaction assays. It was also found that Hsp70 binds simultaneously to XRCC1 and PARP-1, indicating that Hsp70 function takes place at the level of DNA repair and possibly at the base excision repair system. Making a hypothetical model, we have suggested that Hsp70 is the molecule that binds and interrelates with PARP1 creating the repair proteins simultaneously, such as XRCC1, at the single-strand DNA breaks. Our data partially clarify a previously unrecognized cellular response to heat stress. Finally, we can speculate that Hsp70 plays a role in the quality and integrity of DNA.


Hsp70 PARP-1 XRCC1 DNA damage DNA repair DNA breaks Apoptosis Heat shock 



Nucleolar comet assay


  1. Adachi H, Katsuno M, Minamiyama M, Sang C, Pagoulatos G, Angelidis C, Kusakabe M, Yoshiki A, Kobayashi Y, Doyu M, Sobue G (2003) Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein. J Neurosci 23:2203–2211PubMedGoogle Scholar
  2. Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI, Mann M (2005) Nucleolar proteome dynamics. Nature 433:77–83 doi:10.1038/nature03207 PubMedCrossRefGoogle Scholar
  3. Angelidis Ch, Lazaridis I, Pagoulatos G (1988) Specific inhibition of simian virus 40 protein synthesis by heat and arsenite treatment. Eur J Biochem 172:27–34 doi:10.1111/j.1432-1033.1988.tb13851.x PubMedCrossRefGoogle Scholar
  4. Angelidis Ch, Lazaridis I, Pagoulatos G (1991) Constitutive expression of heat-shock protein 70 in mammalian cells confers thermoresistance. Eur J Biochem 199:35–39 doi:10.1111/j.1432-1033.1991.tb16088.x PubMedCrossRefGoogle Scholar
  5. Angelidis CE, Nova C, Lazaridis I, Kontoyiannis D, Kollias G, Pagoulatos GN (1996) Overexpression of HSP70 in transgenic mice results in increased cell thermotolerance. Transgenics 2:111–117Google Scholar
  6. Angelidis CE, Lazaridis I, Pagoulatos GN (1999) Aggregation of hsp70 and hsc70 in vivo is distinct and temperature-dependent and their chaperone function is directly related to non-aggregated forms. Eur J Biochem 259:505–512 doi:10.1046/j.1432-1327.1999.00078.x PubMedCrossRefGoogle Scholar
  7. Bases R (2006) Heat shock protein 70 enhanced deoxyribonucleic acid base excision repair in human leukemic cells after ionizing radiation. Cell Stress Chaperones 11:240–249 doi:10.1379/CSC-185R.1 PubMedCrossRefGoogle Scholar
  8. Beckman RP, Mizzen LA, Welch WJ (1990) Interaction of hsp70 with newly synthesized proteins: Implication s for protein folding and assembly. Science 248:850–854 doi:10.1126/science.2188360 CrossRefGoogle Scholar
  9. Benaroudj N, Triniolles F, Ladjimi MM (1996) Effect of nucleotides, peptides and unfolded proteins on the self-association of the molecular chaperone hsc70. J Biol Chem 271:18471–18476 doi:10.1074/jbc.271.31.18471 PubMedCrossRefGoogle Scholar
  10. Bozidis P, Lazaridis I, Pagoulatos G, Angelidis C (2002) Mydj2 as a potent partner of hsc70 in mammalian cells. Eur J Biochem 269:1553–1560 doi:10.1046/j.1432-1033.2002.02807.x PubMedCrossRefGoogle Scholar
  11. Bruskov VI, Malakhova LV, Masalimov ZK, Chernikov AV (2002) Heat-induced formation of reactive oxygen species and 8-oxoguanine, a biomarker of damage to DNA. Nucleic Acid Res 30:1354–1363 doi:10.1093/nar/30.6.1354 PubMedCrossRefGoogle Scholar
  12. Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451 doi:10.1016/j.cell.2006.04.014 PubMedCrossRefGoogle Scholar
  13. Caldecott KW (2003) XRCC1 and DNA strand break repair. DNA Repair (Amst) 2:955–969 doi:10.1016/S1568-7864(03)00118-6 CrossRefGoogle Scholar
  14. Caldecott KW, Aoufouchi S, Johnson P, Shall S (1996) XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly(ADP-ribose) polymerase, and DNA ligase III is a novel molecular “nick sensor” in vitro. Nucleic Acids Res 24:4387–4394 doi:10.1093/nar/24.22.4387 PubMedCrossRefGoogle Scholar
  15. Calini V, Urani C, Camatini M (2003) Overexpression of Hsp70 is induced by ionizing radiation in C3H 10T1/2 cells and protects from DNA damage. Toxicol In Vitro 17:561–566 doi:10.1016/S0887-2333(03)00116-4 PubMedCrossRefGoogle Scholar
  16. Chiang H-L, Terlecky SR, Plant CP, Dice JF (1989) A role for a 70-kilodalton heat shock protein in lysosomal degredation of intracellular proteins. Science 246:382–385 doi:10.1126/science.2799391 PubMedCrossRefGoogle Scholar
  17. Chirico W, Waters MG, Blobel G (1988) 70 K heat shock related proteins stimulate protein translocation into microsomes. Nature 332:805–810 doi:10.1038/332805a0 PubMedCrossRefGoogle Scholar
  18. Collins AR, Ma AG, Duthie SJ (1995) The kinetics of repair of oxidative DNA damage (strand breaks and oxidised pyrimidines) in human cells. Mutat Res 336:69–77PubMedGoogle Scholar
  19. Coute Y, Burgess JA, Diaz J-J, Chichester C, Lisacek F, Greco A, Sanchez J-C (2005) Deciphering the human nucleolar proteome. Mass Spectrom Rev 25:215–234 doi:10.1002/mas.20067 CrossRefGoogle Scholar
  20. Cummings CJ, Sun Y, Opal P, Antalffy B, Mestril R, Orr HT, Dillmann WH, Zoghbi HY (2001) Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 10:1511–1518 doi:10.1093/hmg/10.14.1511 PubMedCrossRefGoogle Scholar
  21. Dantzer F, Giraud-Panis M-J, Jaco I, Amé J-C, Schultz I, Blasco M, Koering C-El, Gilson E, de Murcia JM, de Murcia G, Schreiber V (2004) Functional Interaction between poly(ADP-Ribose) polymerase 2 (PARP-2) and TRF2: PARP activity negatively regulates TRF2. Mol Cell Biol 24:1595–1607 doi:10.1128/MCB.24.4.1595-1607.2004 PubMedCrossRefGoogle Scholar
  22. Doulias P-T, Christoforidis S, Brunk UT, Galaris D (2003) Endosomal and lysosomal effects of desferrioxamine: protection of HeLa cells from hydrogen peroxide-induced DNA damage and induction of cell-cycle arrest. Free Radic Biol Med 35:719–728 doi:10.1016/S0891-5849(03)00396-4 PubMedCrossRefGoogle Scholar
  23. Doulias P-T, Kotoglou P, Tenopoulou M, Keramisanou D, Tzavaras T, Brunk U, Galaris D, Angelidis C (2007) Involvement of heat shock protein-70 in the mechanism of hydrogen peroxide-induced DNA damage: the role of lysosomes and iron. Free Radic Biol Med 42:567–577 doi:10.1016/j.freeradbiomed.2006.11.022 PubMedCrossRefGoogle Scholar
  24. Dressel R, Johnson JP, Gunther E (1998) Heterogeneous patterns of constitutive and heat shock induced expression of HLA-linked HSP70-1 and HSP70-2 heat shock genes in human melanoma cell lines. Melanoma Res 8:482–492 doi:10.1097/00008390-199812000-00002 PubMedCrossRefGoogle Scholar
  25. Flaherty KM, DeLuca-Flaherty C, McKay DB (1990) Three dimensional structure of the ATPase fragment of a 70 K heat-shock cognate protein. Nature 346:623–628 doi:10.1038/346623a0 PubMedCrossRefGoogle Scholar
  26. Gilbert CS, Van den Bosch M, Green MC, Vialard JE, Grenon M, Erdjument-Bromage H, Tempst P, Lowndes NF (2003) The budding yeast Rad9 checkpoint complex: chaperone proteins are required for its function. EMBO Rep 4:953–958 doi:10.1038/sj.embor.embor935 PubMedCrossRefGoogle Scholar
  27. Grawunder U, Zimmer D, Lieber RM (1998) DNA ligase IV binds to XRCC4 via a motif located between rather than within its BRCT domains. Curr Biol 8:873–879 doi:10.1016/S0960-9822(07)00349-1 PubMedCrossRefGoogle Scholar
  28. Gwack Y, Nakamura H, Lee SH, Souvlis J, Yustein JT, Gygi S, Kung HJ, Jung JU (2003) Poly(ADP-Ribose)polymerase I and Ste20-like kinase hKFC act as transcriptional repressors for gamma-2 herpesvirus lytic replication. Mol Cell Biol 23:8282–8294 doi:10.1128/MCB.23.22.8282-8294.2003 PubMedCrossRefGoogle Scholar
  29. Hang H, Fox MH (1995) Expression of hsp70 induced in CHO cells by 45°C hyperthermia is cell cycle associated and DNA synthesis dependent. Cytometry 19:119 doi:10.1002/cyto.990190206 PubMedCrossRefGoogle Scholar
  30. Henderson AS, Warburton D, Atwood KC (1972) Location of ribosomal DNA in the human chromosome complement. Proc Natl Acad Sci U S A 69:3394–3398 doi:10.1073/pnas.69.11.3394 PubMedCrossRefGoogle Scholar
  31. Hightower LE (1991) Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66:191–197 doi:10.1016/0092-8674(91)90611-2 PubMedCrossRefGoogle Scholar
  32. Huang H-C, Sherman My, Kandror O, Goldberg AL (2001) The molecular chaperone DnaJ is required for the degradation of a soluble abnormal protein in E. coli. J Biol Chem 276:3920–3926 doi:10.1074/jbc.M002937200 PubMedCrossRefGoogle Scholar
  33. Huyton T, Bates PA, Zhang X, Sternberg MJE, Freemont PS (2000) The BRCA1 C-terminal domain: structure and function. Mutat Res 460:319–332PubMedGoogle Scholar
  34. Ikejima M, Noguchi S, Yamashita R, Ogura T, Sugimura T, Gill DM, Miwa M (1990) The zinc fingers of human poly(ADP-ribose) polymerase are differentially required for the recognition of DNA breaks and nicks and the consequent enzyme activation. Other structures recognize intact DNA. J Biol Chem 265:21907–21913PubMedGoogle Scholar
  35. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111 doi:10.1007?s12192-008-0068-7 PubMedCrossRefGoogle Scholar
  36. Lindquist S, Craig EA (1988) The heat shock proteins. Annu Rev Genet 22:631–677 doi:10.1146/annurev.ge.22.120188.003215 PubMedCrossRefGoogle Scholar
  37. Makatsori D, Kourmouli N, Polioudaki H, Shultz LD, McLean K, Theodoropoulos PA, Singh PB, Georgatos SD (2004) The inner nuclear membrane protein lamin B receptor forms distinct microdomains and links epigenetically marked chromatin to the nuclear envelope. J Biol Chem 279:25567–25573 doi:10.1074/jbc.M313606200 PubMedCrossRefGoogle Scholar
  38. Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, deMurcia G (1998) XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 18:3563–3571PubMedGoogle Scholar
  39. Mendez F, Kozin E, Bases R (2003) Heat shock protein 70 stimulation of the deoxyribonucleic acid base excision repair enzyme polymerase beta. Cell Stress Chaperones 8:153–161 doi:10.1379/1466-1268(2003)008<0153:HSPSOT>2.0.CO;2 PubMedCrossRefGoogle Scholar
  40. Milarski KL, Morimoto RI (1986) Expression of human Hsp70 during the synthetic phase of the cell cycle. Proc Natl Acad Sci U S A 83:9517–9521 doi:10.1073/pnas.83.24.9517 PubMedCrossRefGoogle Scholar
  41. Milarski KL, Morimoto RI (1989) Mutational analysis of the human hsp70 protein: distinct domains for nucleolar localization and ATP-binding. J Cell Biol 109:1947–1962 doi:10.1083/jcb.109.5.1947 PubMedCrossRefGoogle Scholar
  42. Minami Y, Hohfeld J, Ohtsuka K, Hartl F-U (1996) Regulation of the heat shock protein 70 reaction cycle by the mammalian DnaJ homolog, hsp40. J Biol Chem 271:19617–19624 doi:10.1074/jbc.271.5.2641 PubMedCrossRefGoogle Scholar
  43. Morimoto RI, Tissières A, Georgopoulos C (1990) The stress response, functions of the proteins, and perspectives. In: Morimoto RI, Tissières A, Georgopoulus C (eds) Stress proteins in biology and medicine. Cold Spring Harbor Laboratory Press, New York, pp 1–36Google Scholar
  44. Mosser DD, Morimoto RI (2004) Molecular chaperones and the stress of oncogenesis. Oncogene 23:2907–2918 doi:10.1038/sj.onc.1207529 PubMedCrossRefGoogle Scholar
  45. Muramatsu M, Onishi T (1978) Isolation and purification of nucleoli and nucleolar chromatin from mammalian cells. Methods Cell Biol 17:141–161 doi:10.1016/S0091-679X(08)61142-5 PubMedCrossRefGoogle Scholar
  46. Nazarkina ZK, Khodyreva SN, Marsin S, Lavrik OI, Radicella JP (2007) XRCC1 interactions with base excision repair DNA intermediates. DNA Repair 6:254–264 doi:10.1016/j.dnarep.2006.10.002 PubMedCrossRefGoogle Scholar
  47. Niu P, Liu L, Gong Z, Tan H, Wang F, Yuan J, Feng Y, Wei Q, Tangway RM, Wu T (2006) Overexpressed heat shock protein 70 protects cells against DNA damage caused by ultraviolet C in a dose-dependent manner. Cell Stress Chaperones 11:162–169 doi:10.1379/CSC-175R.1 PubMedCrossRefGoogle Scholar
  48. Nollen EA, Salomons FA, Brunsting JF, Want JJ, Sibon OC, Kampinga HH (2001) Dynamic changes in the localization of thermally unfolded nuclear proteins associated with chaperone-dependent protection. Proc Natl Acad Sci U S A 98:12038–12043 doi:10.1073/pnas.201112398 PubMedCrossRefGoogle Scholar
  49. Ochs RL (1998) Methods used to study structure and function of the nucleolus. Methods Cell Biol 53:303–321 doi:10.1016/S0091-679X(08)60884-5 PubMedCrossRefGoogle Scholar
  50. Plumier J-CL, Ross BM, Currie RW, Angelidis CH, Kazlaris H, Kollias G, Pagoulatos GN (1995) Transgenic mice expressing the human hsp70 have improved post-ischemic myocardial recovery. J Clin Invest 95:1854–1860 doi:10.1172/JCI117865 PubMedCrossRefGoogle Scholar
  51. Reddy MV, Gangadharam PRJ (1992) Heat shock treatment of macrophages causes increased release of superoxide anion. Infect Immun 60:2386–2390PubMedGoogle Scholar
  52. Rice PA (1999) Holding damaged DNA together. Nat Struct Biol 6:805–806 doi:10.1038/12257 PubMedCrossRefGoogle Scholar
  53. Rodriguez M, Yu X, Chen J, Songyang Z (2003) Phosphopeptide binding specificities of BRCA1 COOH-terminal (BRCT) domains. J Biol Chem 278:52914–52918 doi:10.1074/jbc.C300407200 PubMedCrossRefGoogle Scholar
  54. Sainis I, Angelidis C, Pagoulatos GN, Lazardis I (2000) Hsc70 interactions with SV40 viral proteins differ between per missive and non-permissive mammalian cells. Cell Stress Chaperones 5:132–138 doi:10.1379/1466-1268(2000)005<0132:HIWSVP>2.0.CO;2 PubMedCrossRefGoogle Scholar
  55. Saliba RS, Munro PM, Luthert PJ, Cheetham ME (2002) The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation. J Cell Sci 115:2907–2918PubMedGoogle Scholar
  56. Salma A, Tsiapos A, Lazaridis I (2007) The viral SV40 T antigen cooperates with dj2 to enhance hsc70 chaperone function. FEBS J 274:5021–5027 doi:10.1111/j.1742-4658.2007.06019.x PubMedCrossRefGoogle Scholar
  57. Samali A, Cotter TG (1996) Heat shock proteins increase resistance to apoptosis. Exp Cell Res 223:163–170 doi:10.1006/excr.1996.0070 PubMedCrossRefGoogle Scholar
  58. Sambrook J, Fritsch EF, Maniatis TM (1989) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USAGoogle Scholar
  59. Schreiber V, Dantzer F, Ame J-C, De Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528 doi:10.1038/nrm1963 PubMedCrossRefGoogle Scholar
  60. Scott MD, Frydman J (2003) Aberrant protein folding as the molecular basis of cancer. Methods Mol Biol 232:67–76PubMedGoogle Scholar
  61. Wang TF, Chang JH, Wang C (1993) Identification of the peptide binding domain of hsc70. 18-Kilodalton fragment located immediately after ATPase domain is sufficient for high affinity binding. J Biol Chem 268:26049–26051PubMedGoogle Scholar
  62. Welch WJ, Feramisco JR (1984) Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat-shocked mammalian cells. J Biol Chem 259:4501–4513PubMedGoogle Scholar
  63. Zhang X, Morena S, Bates PA, Whitehead C, Coffer AI, Hainbucher K, Nash R, Sternbera JE, Lindahk T, Freemont PS (1998) Structure of an XRCC1 BRCT domain: a new protein–protein interaction module. EMBO J 17:6404–6411 doi:10.1093/emboj/17.21.6404 PubMedCrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2008

Authors and Affiliations

  • Polychronis Kotoglou
    • 1
  • Alexandros Kalaitzakis
    • 1
  • Patra Vezyraki
    • 2
  • Theodore Tzavaras
    • 1
  • Lampros K. Michalis
    • 3
    • 4
  • Francoise Dantzer
    • 5
  • Jae U. Jung
    • 6
  • Charalampos Angelidis
    • 1
  1. 1.Laboratory of General Biology, Medical SchoolUniversity of IoanninaIoanninaGreece
  2. 2.Laboratory of Experimental Physiology, Medical SchoolUniversity of IoanninaIoanninaGreece
  3. 3.Michaileidion Cardiac Center, Medical SchoolUniversity of IoanninaIoanninaGreece
  4. 4.Department of Cardiology, Medical SchoolUniversity of IoanninaIoanninaGreece
  5. 5.Integrite du GenomeEcole Superieure de Biotechnologie de StrasbourgIllkirchFrance
  6. 6.Department of Microbiology and Molecular Genetics, Tumor Virology Division, New England Primate Research CenterHarvard Medical SchoolSouthboroughUSA

Personalised recommendations