Advertisement

Cell Stress and Chaperones

, Volume 14, Issue 3, pp 245–251 | Cite as

The level of Hsp27 in lymphocytes is negatively associated with a higher risk of lung cancer

  • Feng Wang
  • Maohui Feng
  • Ping Xu
  • Han Xiao
  • Piye Niu
  • Xiaobo Yang
  • Yun Bai
  • Ying Peng
  • Pinfang Yao
  • Hao Tan
  • Robert M. Tanguay
  • Tangchun WuEmail author
Original Paper

Abstract

Heat shock proteins (Hsps) can protect cells, organs, and whole organisms against damage caused by abnormal environmental hazards. Some studies have reported that lymphocyte Hsps may serve as biomarkers for evaluating disease status and exposure to environmental stresses; however, few epidemiologic studies have examined the associations between lymphocyte Hsps levels and lung cancer risk. We examined lymphocyte levels of Hsp27 and Hsp70 in 263 lung cancer cases and age- and gender-matched cancer-free controls by flow cytometry. Multivariate logistic regression models were used to estimate the association between lymphocyte Hsps levels and lung cancer risk. Our results showed that Hsp27 levels were significantly lower in lung cancer cases than in controls (16.5 vs 17.8 mean fluorescence intensity, P < 0.001). This was not observed for Hsp70 levels. Further stratification analysis revealed that lymphocyte Hsp27 levels were negatively associated with lung cancer risk especially in males and heavy smokers. There was a statistical trend of low odd ratios (95% confidence intervals) and upper tertile levels of Hsp27 [1.000, 0.904 (0.566–1.444) and 0.382 (0.221–0.658, P trend = 0.001) in males and 1.000, 0.9207 (0.465–1.822) and 0.419 (0.195–0.897, P trend = 0.036) in heavy smokers] after adjustment for confounding factors. These results suggest that lower lymphocyte Hsp27 levels might be associated with an increased risk of lung cancer. Our findings need to be validated in a large prospective study.

Keywords

Biomarker Hsp27 Hsp70 Hsps Lung cancer Lymphocyte Risk 

Abbreviations

BSA

bovine serum albumin

CI

confidence intervals

Hsp27

heat shock protein 27

Hsp70

heat shock protein 70

Hsps

heat shock proteins

MFI

mean fluorescence intensity

OR

odds ratios

PBS

phosphate-buffered saline

Notes

Acknowledgments

We thank all individuals who volunteered to participate in this study and the members of health examination center of Wugang Worker-Staff Hospital and Qingyi Wei of The University of M.D. Anderson Cancer Center for his critical review and scientific editing. This work was supported by research funds from the National Natural Science Foundation of China (NNSFC 30525031 and 30600491) and the National Key Basic Research and Development Program (2002CB512905), and a NNSFC-CIHR (Canadian Institutes of Health Research) joint research program to Tangchun Wu and Robert M Tanguay.

References

  1. Alberg AJ, Samet JM (2003) Epidemiology of lung cancer. Chest 123:21S–49S doi: 10.1378/chest.123.1_suppl.21S PubMedCrossRefGoogle Scholar
  2. Arrigo AP, Firdaus WJ, Mellier G, Moulin M, Paul C, Diaz-Latoud C, Kretz-Remy C (2005a) Cytotoxic effects induced by oxidative stress in cultured mammalian cells and protection provided by Hsp27 expression. Methods 35:126–138 doi: 10.1016/j.ymeth.2004.08.003 PubMedCrossRefGoogle Scholar
  3. Arrigo AP, Virot S, Chaufour S, Firdaus W, Kretz-Remy C, Diaz-Latoud C (2005b) Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxid Redox Signal 7:414–422 doi: 10.1089/ars.2005.7.414 PubMedCrossRefGoogle Scholar
  4. Beck FX, Neuhofer W, Muller E (2000) Molecular chaperones in the kidney: distribution, putative roles, and regulation. Am J Physiol Renal Physiol 279:F203–F215PubMedGoogle Scholar
  5. Bellmann K, Burkart V, Bruckhoff J, Kolb H, Landry J (2000) p38-dependent enhancement of cytokine-induced nitric-oxide synthase gene expression by heat shock protein 70. J Biol Chem 275:18172–18179 doi: 10.1074/jbc.M000340200 PubMedCrossRefGoogle Scholar
  6. Bonassi S, Au WW (2002) Biomarkers in molecular epidemiology studies for health risk prediction. Mutat Res 511:73–86 doi: 10.1016/S1383-5742(02)00003-0 PubMedCrossRefGoogle Scholar
  7. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103 doi: 10.1379/CSC-99r.1 PubMedCrossRefGoogle Scholar
  8. Currie RW, Tanguay RM, Kingma JG Jr (1993) Heat-shock response and limitation of tissue necrosis during occlusion/reperfusion in rabbit hearts. Circulation 87:963–971PubMedGoogle Scholar
  9. Dierick I, Irobi J, Janssens S et al (2007) Genetic variant in the HSPB1 promoter region impairs the HSP27 stress response. Hum Mutat 28:830 doi: 10.1002/humu.9503 PubMedCrossRefGoogle Scholar
  10. Dunn DK, Whelan RD, Hill B, King RJ (1993) Relationship of HSP27 and oestrogen receptor in hormone sensitive and insensitive cell lines. J Steroid Biochem Mol Biol 46:469–479 doi: 10.1016/0960-0760(93)90101-2 PubMedCrossRefGoogle Scholar
  11. Favatier F, Bornman L, Hightower LE, Gunther E, Polla BS (1997) Variation in hsp gene expression and Hsp polymorphism: do they contribute to differential disease susceptibility and stress tolerance? Cell Stress Chaperones 2:141–155 doi: 10.1379/1466-1268(1997)002<0141:VIHGEA>2.3.CO;2 PubMedCrossRefGoogle Scholar
  12. Ferrigno D, Buccheri G, Biggi A (1994) Serum tumour markers in lung cancer: history, biology and clinical applications. Eur Respir J 7:186–197 doi: 10.1183/09031936.94.07010186 PubMedCrossRefGoogle Scholar
  13. Finkel T, Serrano M, Blasco MA (2007) The common biology of cancer and ageing. Nature 448:767–774 doi: 10.1038/nature05985 PubMedCrossRefGoogle Scholar
  14. Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G (2006) Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5:2592–2601PubMedGoogle Scholar
  15. Hollander JM, Martin JL, Belke DD, Scott BT, Swanson E, Krishnamoorthy V, Dillmann WH (2004) Overexpression of wild-type heat shock protein 27 and a nonphosphorylatable heat shock protein 27 mutant protects against ischemia/reperfusion injury in a transgenic mouse model. Circulation 110:3544–3552 doi: 10.1161/01.CIR.0000148825.99184.50 PubMedCrossRefGoogle Scholar
  16. Jin X, Wang R, Xiao C et al (2004a) Serum and lymphocyte levels of heat shock protein 70 in aging: a study in the normal Chinese population. Cell Stress Chaperones 9:69–75PubMedGoogle Scholar
  17. Jin X, Xiao C, Tanguay RM et al (2004b) Correlation of lymphocyte heat shock protein 70 levels with neurologic deficits in elderly patients with cerebral infarction. Am J Med 117:406–411 doi: 10.1016/j.amjmed.2004.03.026 PubMedCrossRefGoogle Scholar
  18. Jindal S (1996) Heat shock proteins: applications in health and disease. Trends Biotechnol 14:17–20 doi: 10.1016/0167-7799(96)80909-7 PubMedCrossRefGoogle Scholar
  19. Jolly C, Morimoto RI (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 92:1564–1572 doi: 10.1093/jnci/92.19.1564 PubMedCrossRefGoogle Scholar
  20. Li S, Zheng J, Carmichael ST (2005) Increased oxidative protein and DNA damage but decreased stress response in the aged brain following experimental stroke. Neurobiol Dis 18:432–440 doi: 10.1016/j.nbd.2004.12.014 PubMedCrossRefGoogle Scholar
  21. Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677 doi: 10.1146/annurev.ge.22.120188.003215 PubMedCrossRefGoogle Scholar
  22. Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH (1995) Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 95:1446–1456 doi: 10.1172/JCI117815 PubMedCrossRefGoogle Scholar
  23. Mehlen P, Hickey E, Weber LA, Arrigo AP (1997) Large unphosphorylated aggregates as the active form of hsp27 which controls intracellular reactive oxygen species and glutathione levels and generates a protection against TNFalpha in NIH-3T3-ras cells. Biochem Biophys Res Commun 241:187–192 doi: 10.1006/bbrc.1997.7635 PubMedCrossRefGoogle Scholar
  24. Merendino AM, Paul C, Vignola AM et al (2002) Heat shock protein-27 protects human bronchial epithelial cells against oxidative stress-mediated apoptosis: possible implication in asthma. Cell Stress Chaperones 7:269–280 doi: 10.1379/1466-1268(2002)007<0269:HSPPHB>2.0.CO;2 PubMedCrossRefGoogle Scholar
  25. Milne KJ, Noble EG (2008) Response of the myocardium to exercise: sex-specific regulation of hsp70. Med Sci Sports Exerc 40:655–663PubMedCrossRefGoogle Scholar
  26. Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–796 doi: 10.1101/gad.12.24.3788 PubMedCrossRefGoogle Scholar
  27. Morimoto RI, Tissieres A, Georgopoulos C (eds) (1994) Progress and perspectives on the biology of heat shock proteins and molecular chaperones. The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, pp 1–30Google Scholar
  28. Mosser DD, Morimoto RI (2004) Molecular chaperones and the stress of oncogenesis. Oncogene 23:2907–2918 doi: 10.1038/sj.onc.1207529 PubMedCrossRefGoogle Scholar
  29. Niu P, Liu L, Gong Z et al (2006) Overexpressed heat shock protein 70 protects cells against DNA damage caused by ultraviolet C in a dose-dependent manner. Cell Stress Chaperones 11:162–169 doi: 10.1379/CSC-175R.1 PubMedCrossRefGoogle Scholar
  30. Njemini R, Abeele MV, Demanet C, Lambert M, Vandebosch S, Mets T (2002) Age-related decrease in the inducibility of heat-shock protein 70 in human peripheral blood mononuclear cells. J Clin Immunol 22:195–205 doi: 10.1023/A:1016036724386 PubMedCrossRefGoogle Scholar
  31. Njemini R, Lambert M, Demanet C, Mets T (2006) The effect of aging and inflammation on heat shock protein 27 in human monocytes and lymphocytes. Exp Gerontol 41:312–319 doi: 10.1016/j.exger.2006.01.006 PubMedCrossRefGoogle Scholar
  32. Njemini R, Lambert M, Demanet C, Kooijman R, Mets T (2007) Basal and infection-induced levels of heat shock proteins in human aging. Biogerontology 8:353–364 doi: 10.1007/s10522-006-9078-y PubMedCrossRefGoogle Scholar
  33. Nollen EA, Brunsting JF, Roelofsen H, Weber LA, Kampinga HH (1999) In vivo chaperone activity of heat shock protein 70 and thermotolerance. Mol Cell Biol 19:2069–2079PubMedGoogle Scholar
  34. Plumier JC, Krueger AM, Currie RW, Kontoyiannis D, Kollias G, Pagoulatos GN (1997) Transgenic mice expressing the human inducible Hsp70 have hippocampal neurons resistant to ischemic injury. Cell Stress Chaperones 2:162–167 doi: 10.1379/1466-1268(1997)002<0162:TMETHI>2.3.CO;2 PubMedCrossRefGoogle Scholar
  35. Radford NB, Fina M, Benjamin IJ et al (1996) Cardioprotective effects of 70-kDa heat shock protein in transgenic mice. Proc Natl Acad Sci USA 93:2339–2342 doi: 10.1073/pnas.93.6.2339 PubMedCrossRefGoogle Scholar
  36. Rogalla T, Ehrnsperger M, Preville X et al (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 274:18947–18956 doi: 10.1074/jbc.274.27.18947 PubMedCrossRefGoogle Scholar
  37. Ryder MI, Hyun W, Loomer P, Haqq C (2004) Alteration of gene expression profiles of peripheral mononuclear blood cells by tobacco smoke: implications for periodontal diseases. Oral Microbiol Immunol 19:39–49 doi: 10.1046/j.0902-0055.2003.00110.x PubMedCrossRefGoogle Scholar
  38. Sarto C, Binz PA, Mocarelli P (2000) Heat shock proteins in human cancer. Electrophoresis 21:1218–1226 doi: 10.1002/(SICI)1522-2683(20000401)21:6<1218::AID-ELPS1218>3.0.CO;2-H PubMedCrossRefGoogle Scholar
  39. Shi Y, Mosser DD, Morimoto RI (1998) Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 12:654–666 doi: 10.1101/gad.12.5.654 PubMedCrossRefGoogle Scholar
  40. Tan H, Xu Y, Xu J et al (2007) Association of increased heat shock protein 70 levels in the lymphocyte with high risk of adverse pregnancy outcomes in early pregnancy: a nested case–control study. Cell Stress Chaperones 12:230–236 doi: 10.1379/CSC-266.1 PubMedCrossRefGoogle Scholar
  41. Tanguay RM, Wu T (2006) Heat shock proteins in environmental stresses and environment-related diseases. In: Radons J, Multhoff G (eds) Heat shock proteins in biology and medicine. Research Signpost, Kerala, pp 407–420Google Scholar
  42. Vargas SO, Leslie KO, Vacek PM, Socinski MA, Weaver DL (1998) Estrogen-receptor-related protein p29 in primary nonsmall cell lung carcinoma: pathologic and prognostic correlations. Cancer 82:1495–1500 doi: 10.1002/(SICI)1097-0142(19980415)82:8<1495::AID-CNCR10>3.0.CO;2-# PubMedCrossRefGoogle Scholar
  43. Vayssier M, Favatier F, Pinot F, Bachelet M, Polla BS (1998) Tobacco smoke induces coordinate activation of HSF and inhibition of NFkappaB in human monocytes: effects on TNFalpha release. Biochem Biophys Res Commun 252:249–256 doi: 10.1006/bbrc.1998.9586 PubMedCrossRefGoogle Scholar
  44. Vayssier-Taussat M, Camilli T, Aron Y, Meplan C, Hainaut P, Polla BS, Weksler B (2001) Effects of tobacco smoke and benzo[a]pyrene on human endothelial cell and monocyte stress responses. Am J Physiol Heart Circ Physiol 280:H1293–H1300PubMedGoogle Scholar
  45. Voss MR, Stallone JN, Li M, Cornelussen RN, Knuefermann P, Knowlton AA (2003) Gender differences in the expression of heat shock proteins: the effect of estrogen. Am J Physiol Heart Circ Physiol 285:H687–H692PubMedGoogle Scholar
  46. Wano C, Kita K, Takahashi S, Sugaya S, Hino M, Hosoya H, Suzuki N (2004) Protective role of HSP27 against UVC-induced cell death in human cells. Exp Cell Res 298:584–592 doi: 10.1016/j.yexcr.2004.04.048 PubMedCrossRefGoogle Scholar
  47. Wong HR, Wispe JR (1997) The stress response and the lung. Am J Physiol 273:L1–L9PubMedGoogle Scholar
  48. Wu T, Tanguay RM (2006) Antibodies against heat shock proteins in environmental stresses and diseases: friend or foe? Cell Stress Chaperones 11:1–12 doi: 10.1379/CSC-155R.1 PubMedCrossRefGoogle Scholar
  49. Xiao C, Chen S, Li J et al (2002) Association of Hsp70 and genotoxic damage in lymphocytes of workers exposed to coke-oven emission. Cell Stress Chaperones 7:396–402 doi: 10.1379/1466-1268(2002)007<0396:AOHAGD>2.0.CO;2 PubMedCrossRefGoogle Scholar
  50. Xiao C, Wu T, Ren A et al (2003) Basal and inducible levels of Hsp70 in patients with acute heat illness induced during training. Cell Stress Chaperones 8:86–92 doi: 10.1379/1466-1268(2003)8<86:BAILOH>2.0.CO;2 PubMedCrossRefGoogle Scholar
  51. Yang X, Zheng J, Bai Y et al (2007) Using lymphocyte and plasma Hsp70 as biomarkers for assessing coke oven exposure among steel workers. Environ Health Perspect 115:1573–1577PubMedCrossRefGoogle Scholar
  52. Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5:781–791 doi: 10.1038/nrm1492 PubMedCrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2008

Authors and Affiliations

  • Feng Wang
    • 1
  • Maohui Feng
    • 1
    • 2
  • Ping Xu
    • 3
  • Han Xiao
    • 1
  • Piye Niu
    • 1
  • Xiaobo Yang
    • 1
  • Yun Bai
    • 1
  • Ying Peng
    • 3
  • Pinfang Yao
    • 4
  • Hao Tan
    • 1
  • Robert M. Tanguay
    • 5
  • Tangchun Wu
    • 1
    Email author
  1. 1.Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, 2nd Building, School of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Department of OncologyZhongnan Hospital of Wuhan UniversityWuhanChina
  3. 3.Department of OncologyWugang Staff-Worker HospitalWuhanChina
  4. 4.Cancer InstituteHubei Cancer HospitalWuhanChina
  5. 5.Laboratory of Cellular and Developmental Genetics, Department of Medicine, Faculty of Medicine, and PROTEO, Pavillon C.E. MarchandUniversité LavalQuébecCanada

Personalised recommendations