Cell Stress and Chaperones

, Volume 14, Issue 3, pp 233–243 | Cite as

Characterization of orchardgrass p23, a flowering plant Hsp90 cohort protein

  • Joon-Yung Cha
  • Netty Ermawati
  • Min Hee Jung
  • Mukhamad Su’udi
  • Ki-Yong Kim
  • Jae-Yean Kim
  • Chang-deok Han
  • Kon Ho Lee
  • Daeyoung Son
Original Paper

Abstract

p23 is a heat shock protein 90 (Hsp90) co-chaperone and stabilizes the Hsp90 heterocomplex in mammals and yeast. In this study, we isolated a complementary DNA (cDNA) encoding p23 from orchardgrass (Dgp23) and characterized its functional roles under conditions of thermal stress. Dgp23 is a 911 bp cDNA with an open reading frame predicted to encode a 180 amino acid protein. Northern analysis showed that expression of Dgp23 transcripts was heat inducible. Dgp23 has a well-conserved p23 domain and interacted with an orchardgrass Hsp90 homolog in vivo, like mammalian and yeast p23 homologs. Recombinant Dgp23 is a small acidic protein with a molecular mass of approximately 27 kDa and pI 4.3. Dgp23 was also shown to function as a chaperone protein by suppression of malate dehydrogenase thermal aggregation. Differential scanning calorimetry thermograms indicated that Dgp23 is a heat-stable protein, capable of increasing the Tm of lysozyme. Moreover, overexpression of Dgp23 in a yeast p23 homolog deletion strain, Δsba1, increased cell viability. These results suggest that Dgp23 plays a role in thermal stress-tolerance and functions as a co-chaperone of Hsp90 and as a chaperone.

Keywords

Chaperone Co-chaperone Hsp90 p23 Orchardgrass Heat stress Thermotolerance 

References

  1. Aviezer-Hagai K, Skovorodnikova J, Galigniana M et al (2007) Arabidopsis immunophilins ROF1 (AtFKBP62) and ROF2 (AtFKBP65) exhibit tissue specificity, are heat-stress induced, and bind HSP90. Plant Mol Biol 63:237–255 doi:10.1007/s11103-006-9085-z PubMedCrossRefGoogle Scholar
  2. Babu KR, Bhakuni V (1997) Ionic-strength-dependent transition of hen egg-white lysozyme at low pH to a compact state and its aggregation on thermal denaturation. Eur J Biochem 245:781–789 doi:10.1111/j.1432-1033.1997.00781.x PubMedCrossRefGoogle Scholar
  3. Basha E, Lee GJ, Demeler B, Vierling E (2004) Chaperone activity of cytosolic small heat shock proteins from wheat. Eur J Biochem 271:1426–1436 doi:10.1111/j.1432-1033.2004.04033.x PubMedCrossRefGoogle Scholar
  4. Bose S, Weikl T, Bűgl H, Buchner J (1996) Chaperone function of hsp90-associated proteins. Science 274:1715–1717 doi:10.1126/science.274.5293.1715 PubMedCrossRefGoogle Scholar
  5. Buchner J (1999) Hsp90 & Co.—a holding for folding. Trends Biochem Sci 24:136–141 doi:10.1016/S0968-0004(99)01373-0 PubMedCrossRefGoogle Scholar
  6. Buchner J, Weikl T, Bügl H, Pirkl F, Bose S (1998) Purification of Hsp90 partner protein Hop/p60, p23, and FKBP52. Methods Enzymol 290:418–429 doi:10.1016/S0076-6879(98)90035-0 PubMedCrossRefGoogle Scholar
  7. Caplan AJ, Jackson S, Smith D (2003) Hsp90 reaches new heights. EMBO rep 4:126–130 doi:10.1038/sj.embor.embor742 PubMedCrossRefGoogle Scholar
  8. Chadli A, Bouhouche I, Sullivan W, Stensgard B, McMahon N, Catelli MG, Toft DO (2000) Dimerization and N-terminal domain proximity underlie the function of the molecular chaperone heat shock protein 90. Proc Natl Acad Sci U S A 97:12524–12529 doi:10.1073/pnas.220430297 PubMedCrossRefGoogle Scholar
  9. Chen S, Smith DF (1998) Hop as an adaptor in the heat shock protein 70 (Hsp70) and Hsp90 chaperone machinery. J Biol Chem 273:35194–35200 doi:10.1074/jbc.273.52.35194 PubMedCrossRefGoogle Scholar
  10. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31:3497–3500 doi:10.1093/nar/gkg500 PubMedCrossRefGoogle Scholar
  11. de la Fuente van Bentem S, Vossen JH, de Vries KD et al (2005) Heat shock protein 90 and its co-chaperone protein phosphatase 5 interact with distinct regions of the tomato I-2 disease resistance protein. Plant J 43:284–298 doi:10.1111/j.1365-313X.2005.02450.x PubMedCrossRefGoogle Scholar
  12. Dittmar KD, Demady DR, Stancato LF, Krishna P, Pratt WB (1997) Folding of the glucocorticoid receptor by the heat shock protein (hsp) 90-based chaperone machinery. J Biol Chem 272:21213–21220 doi:10.1074/jbc.272.34.21213 PubMedCrossRefGoogle Scholar
  13. Fairhead C, Dujon B (1994) Transcript map of two regions from chromosome XI of Saccharomyces cerevisiae for interpretation of systematic sequencing results. Yeast 10:1403–1413 doi:10.1002/yea.320101103 PubMedCrossRefGoogle Scholar
  14. Fang Y, Fliss AE, Rao J, Caplan AJ (1998) SBA1 encodes a yeast hsp90 cochaperone that is homologous to vertebrate p23 proteins. Mol Cell Biol 18:3727–3734PubMedGoogle Scholar
  15. Fu L, Liang JJ (2003) Enhanced stability of alpha B-crystallin in the presence of small heat shock protein Hsp27. Biochem Biophys Res Commun 302:710–714 doi:10.1016/S0006-291X(03)00257-2 PubMedCrossRefGoogle Scholar
  16. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  17. Huang HC, Sherman MY, Kandror O, Goldberg AL (2001) The molecular chaperone DnaJ is required for the degradation of a soluble abnormal protein in Escherichia coli. J Biol Chem 276:3920–3928 doi:10.1074/jbc.M002937200 PubMedCrossRefGoogle Scholar
  18. Hubert DA, Tomero P, Belkhadir Y, Krishna P, Takahashi A, Shirasu K, Dangl JL (2003) Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J 22:5679–5689 doi:10.1093/emboj/cdg547 PubMedCrossRefGoogle Scholar
  19. Hutchison KA, Stancato LF, Owens-Grillo JK, Johnson JL, Krishna P, Toft DO, Pratt WB (1995) The 23-kDa acidic protein in reticulocyte lysate is the weakly bound component of the hsp foldosome that is required for assembly of the glucocorticoid receptor into a functional heterocomplex with Hsp90. J Biol Chem 270:18841–18847 doi:10.1074/jbc.270.31.18543 PubMedCrossRefGoogle Scholar
  20. Johnson JL, Toft DO (1995) Binding of p23 and hsp90 during assembly with the progesterone receptor. Mol Endo 9:670–678 doi:10.1210/me.9.6.670 CrossRefGoogle Scholar
  21. Johnson JL, Beito TG, Krco CJ, Toft DO (1994) Characterization of a novel 23-kilodalton protein of unactive progesterone receptor complexes. Mol Cell Biol 14:1956–1963PubMedGoogle Scholar
  22. Kamphausen T, Fanghänel J, Neumann D, Schulz B, Rahfeld JU (2002) Characterization of Arabidopsis thaliana AtFKBP42 that is membrane-bound and interacts with Hsp90. Plant J 32:263–276 doi:10.1046/j.1365-313X.2002.01420.x PubMedCrossRefGoogle Scholar
  23. Kern R, Malki A, Holmgren A, Richarme G (2003) Chaperone properties of Escherichia coli thioredoxin and thioredoxin reductase. Biochem J 371:965–972 doi:10.1042/BJ20030093 PubMedCrossRefGoogle Scholar
  24. Kim KY, Chung MS, Jo J (1997) Acquisition of thermotolerance in the transgenic plants with BcHSP17.6 cDNA. J Korean Soc Grassl Sci 17:379–386Google Scholar
  25. Kim DR, Lee I, Ha SC, Kim KK (2003) Activation mechanisms of HSP16.5 from Methanococcus jannaschii. Biochem Biophys Res Commun 307:991–998 doi:10.1016/S0006-291X(03)01302-0 PubMedCrossRefGoogle Scholar
  26. Kim H-J, Hwang NR, Lee K-J (2007) Heat shock responses for understanding diseases of protein denaturation. Mol Cells 23:123–131PubMedGoogle Scholar
  27. Kim MV, Seit-Nebi AS, Marston SB, Gusev NB (2004) Some properties of human small heat shock protein Hsp22 (H11 or HspB8). Biochem Biophys Res Commun 315:796–801 doi:10.1016/j.bbrc.2004.01.130 PubMedCrossRefGoogle Scholar
  28. Kosano H, Stensgard B, Charlesworth MC, McMahon N, Toft D (1998) The assembly of progesterone receptor–hsp90 complexes using purified proteins. J Biol Chem 273:32973–32979 doi:10.1074/jbc.273.49.32973 PubMedCrossRefGoogle Scholar
  29. Laemmili UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 doi:10.1038/227680a0 CrossRefGoogle Scholar
  30. Lai B-T, Chin NW, Stanek AE, Keh W, Lanks KW (1984) Quantitation and intracellular localization of the 85 K heat shock protein by using monoclonal and polyclonal antibodies. Mol Cell Biol 4:2802–2810PubMedGoogle Scholar
  31. Lee JH, Schöffl F (1996) An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Mol Gen Genet 252:11–19PubMedCrossRefGoogle Scholar
  32. Li GC, Li L, Liu Y, Mak JY, Chen L, Lee WMF (1991) Thermal response of rat fibroblasts stably transfected with the human 70-kDa heat shock protein-encoding gene. Proc Natl Acad Sci U S A 88:1681–1685 doi:10.1073/pnas.88.5.1681 PubMedCrossRefGoogle Scholar
  33. McLaughlin SH, Sobott F, Yao ZP et al (2006) The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins. J Mol Biol 356:746–758 doi:10.1016/j.jmb.2005.11.085 PubMedCrossRefGoogle Scholar
  34. Miernyk JA (1999) Protein folding in the plant cell. Plant Physiol 121:695–703 doi:10.1104/pp.121.3.695 PubMedCrossRefGoogle Scholar
  35. Moon H, Baek D, Lee B et al (2002) Soybean ascorbate peroxidase suppresses Bax-induced apoptosis in yeast by inhibiting oxygen radical generation. Biochem Biophys Res Commun 290:457–462 doi:10.1006/bbrc.2001.6208 PubMedCrossRefGoogle Scholar
  36. Morishima Y, Kanelakis KC, Murphy PJM et al (2003) The hsp90 cochaperone p23 is the limiting component of the multiprotein hsp90/hsp70-based chaperone system in vivo where it acts to stabilize the client protein•hsp90 complex. J Biol Chem 278:48754–48763 doi:10.1074/jbc.M309814200 PubMedCrossRefGoogle Scholar
  37. Muskett P, Parker J (2003) Role of SGT1 in the regulation of plant R gene signaling. Microbes Infect 5:969–976 doi:10.1016/S1286-4579(03)00183-7 PubMedCrossRefGoogle Scholar
  38. Nicholas KB, Nicholas HBJ, Deerfield DWII (1997) GeneDoc: analysis and visualization of genetic variation. EMBNEW News 4:14Google Scholar
  39. Nigam N, Singh A, Sahi C, Chandramouli A, Grover A (2008) SUMO-conjugating enzyme (Sce) and FK506-binding protein (FKBP) encoding rice (Oryza sativa L.) genes: genome-wide analysis, expression studies and evidence for their involvement in abiotic stress response. Mol Genet Genomics 279:371–383 doi:10.1007/s00438-008-0318-5 PubMedCrossRefGoogle Scholar
  40. Obermann WMJ, Sondermann H, Russo AA, Pavletich NP, Hartl FU (1998) In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 143:901–910 doi:10.1083/jcb.143.4.901 PubMedCrossRefGoogle Scholar
  41. Olszewski NE, Gast RT, Ausubel FM (1989) A dual-labeling method for identifying differentially expressed genes: use in the identification of cDNA clones that hybridize to RNAs whose abundance in tomato flowers is potentially regulated by gibberellins. Gene 77:155–162 doi:10.1016/0378-1119(89)90369-7 PubMedCrossRefGoogle Scholar
  42. Pivovarova V, Mikhailova VV, Chernik IS, Chebotareva NA, Levitsky DI, Gusev NB (2005) Effects of small heat shock proteins on the thermal denaturation and aggregation of F-actin. Biochem Biophys Res Commun 331:1548–1553 doi:10.1016/j.bbrc.2005.04.077 PubMedCrossRefGoogle Scholar
  43. Polenta GA, Calvete JJ, González CB (2007) Isolation and characterization of the main small heat shock proteins induced in tomato pericarp by the thermal treatment. FEBS J 274:6447–6455PubMedGoogle Scholar
  44. Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med 228:111–133Google Scholar
  45. Prodromou C, Panaretou B, Chohan S et al (2000) The ATPase cycle of Hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains. EMBO J 19:4383–4392 doi:10.1093/emboj/19.16.4383 PubMedCrossRefGoogle Scholar
  46. Queitsch C, Hong SW, Vierling E, Lindquist S (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12:479–492PubMedCrossRefGoogle Scholar
  47. Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618–624 doi:10.1038/nature749 PubMedCrossRefGoogle Scholar
  48. Sangster TA, Queitsch C (2005) The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity. Curr Opin Plant Biol 8:86–92 doi:10.1016/j.pbi.2004.11.012 PubMedCrossRefGoogle Scholar
  49. Schirmer EC, Lindquist S, Vierling E (1994) An Arabidopsis heat shock protein complements a thermotolerance defect in yeast. Plant Cell 6:1899–1909PubMedCrossRefGoogle Scholar
  50. Smith DF, Faber LE, Toft DO (1990) Purification of unactivated progesterone receptor and identification of novel receptor-associated proteins. J Biol Chem 265:3996–4003PubMedGoogle Scholar
  51. Solomon JM, Rossi JM, Golic K, McGarry T, Lindquist S (1991) Changes in Hsp70 alter thermotolerance and heat-shock regulation in Drosophila. New Biologist 3:1106–1120PubMedGoogle Scholar
  52. Somji S, Sens MA, Garrett SH, Gurel V, Todd JH, Sens DA (2002) Expression of hsp90 in the human kidney and in proximal tubule cells exposed to heat, sodium arsenite and cadmium chloride. Toxicol Lett 133:241–254 doi:10.1016/S0378-4274(02)00205-9 PubMedCrossRefGoogle Scholar
  53. Stancato LF, Hutchison KA, Krishna P, Pratt WB (1996) Animal and plant cell lysates share a conserved chaperone system that assemblies the glucocorticoid receptor into a functional heterocomplex with Hsp90. Biochemistry 35:554–561 doi:10.1021/bi9511649 PubMedCrossRefGoogle Scholar
  54. Sullivan WP, Owen BAL, Toft DO (2002) The influence of ATP and p23 on the conformation of hsp90. J Biol Chem 277:45942–45948 doi:10.1074/jbc.M207754200 PubMedCrossRefGoogle Scholar
  55. Takahashi A, Casais C, Ichimura K, Shirasu K (2003) Hsp90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci U S A 100:11777–11782 doi:10.1073/pnas.2033934100 PubMedCrossRefGoogle Scholar
  56. Weaver AJ, Sullivan WP, Felts SJ, Owen BAL, Toft DO (2000) Crystal structure and activity of human p23, a heat shock protein 90 co-chaperone. J Biol Chem 275:23045–23052 doi:10.1074/jbc.M003410200 PubMedCrossRefGoogle Scholar
  57. Weikl T, Abelmann K, Buchner J (1999) An unstructured C-terminal region of the Hsp90 co-chaperone p23 is important for its chaperone function. J Mol Biol 293:685–691 doi:10.1006/jmbi.1999.3172 PubMedCrossRefGoogle Scholar
  58. Yonehara M, Minami Y, Kawata Y, Nagai J, Yahara I (1996) Heat-induced chaperone activity of HSP90. J Biol Chem 271:2641–2645 doi:10.1074/jbc.271.5.2641 PubMedCrossRefGoogle Scholar
  59. Young JC, Hartl FU (2000) Polypeptide release by hsp90 involves ATP hydrolysis and is enhanced by the co-chaperone p23. EMBO J 19:5930–5940 doi:10.1093/emboj/19.21.5930 PubMedCrossRefGoogle Scholar
  60. Zhang Z, Quick MK, Kanelakis KC, Gijzen M, Krishna P (2003) Characterization of a plant homolog of Hop, a cochaperone of Hsp90. Plant Physiol 131:525–535 doi:10.1104/pp.011940 PubMedCrossRefGoogle Scholar
  61. Zhao B, Zhang Z, Wang Y, Liu Z, Kong D (2006) Characterization and expression of p23 gene in the amphioxus Branchiostoma belcheri. Comp Biochem Physiol B 145:10–15 doi:10.1016/j.cbpb.2006.05.011 PubMedCrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2008

Authors and Affiliations

  • Joon-Yung Cha
    • 1
    • 2
  • Netty Ermawati
    • 1
    • 2
  • Min Hee Jung
    • 1
    • 2
  • Mukhamad Su’udi
    • 1
    • 2
  • Ki-Yong Kim
    • 3
  • Jae-Yean Kim
    • 1
    • 2
  • Chang-deok Han
    • 1
    • 2
  • Kon Ho Lee
    • 1
    • 2
  • Daeyoung Son
    • 1
    • 2
  1. 1.Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research CenterGyeongsang National UniversityJinjuSouth Korea
  2. 2.Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuSouth Korea
  3. 3.National Institute of Animal Science, RDACheonanSouth Korea

Personalised recommendations