Cell Stress and Chaperones

, Volume 14, Issue 1, pp 105–111 | Cite as

Guidelines for the nomenclature of the human heat shock proteins

  • Harm H. Kampinga
  • Jurre Hageman
  • Michel J. Vos
  • Hiroshi Kubota
  • Robert M. Tanguay
  • Elspeth A. Bruford
  • Michael E. Cheetham
  • Bin Chen
  • Lawrence E. Hightower
Short Communication

Abstract

The expanding number of members in the various human heat shock protein (HSP) families and the inconsistencies in their nomenclature have often led to confusion. Here, we propose new guidelines for the nomenclature of the human HSP families, HSPH (HSP110), HSPC (HSP90), HSPA (HSP70), DNAJ (HSP40), and HSPB (small HSP) as well as for the human chaperonin families HSPD/E (HSP60/HSP10) and CCT (TRiC). The nomenclature is based largely on the more consistent nomenclature assigned by the HUGO Gene Nomenclature Committee and used in the National Center of Biotechnology Information Entrez Gene database for the heat shock genes. In addition to this nomenclature, we provide a list of the human Entrez Gene IDs and the corresponding Entrez Gene IDs for the mouse orthologs.

Keywords

Nomenclature Human heat shock proteins 

References

  1. Brocchieri L, Conway de Macario E, Macario AJ (2008) hsp70 genes in the human genome: Conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evol Biol 8:19 doi: 10.1186/1471-2148-8-19 PubMedCrossRefGoogle Scholar
  2. Chen B, Piel WH, Gui L, Bruford E, Monteiro A (2005) The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics 86:627–637 doi: 10.1016/j.ygeno.2005.08.012 PubMedCrossRefGoogle Scholar
  3. Chen B, Zhong D, Monteiro A (2006) Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics 7:156PubMedCrossRefGoogle Scholar
  4. Dragovic Z, Broadley SA, Shomura Y, Bracher A, Hartl FU (2006) Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J 25:2519–2528 doi: 10.1038/sj.emboj.7601138 PubMedCrossRefGoogle Scholar
  5. Hennessy F, Nicoll WS, Zimmermann R, Cheetham ME, Blatch GL (2005) Not all J domains are created equal: implications for the specificity of Hsp40–Hsp70 interactions. Protein Sci 14:1697–1709 doi: 10.1110/ps.051406805 PubMedCrossRefGoogle Scholar
  6. Nagai N, Tetuya Y, Hosokawa N, Nagata K (1999) The human genome has only one functional hsp47 gene (CBP2) and a pseudogene (pshsp47). Gene 227:241–248 doi: 10.1016/S0378-1119(98)00592-7 PubMedCrossRefGoogle Scholar
  7. Ohtsuka K, Hata M (2000) Mammalian HSP40/DNAJ homologs: cloning of novel cDNAs and a proposal for their classification and nomenclature. Cell Stress Chaperones 2:98–112 doi: 10.1379/1466-1268(2000)005<0098:MHDHCO>2.0.CO;2 CrossRefGoogle Scholar
  8. Raviol H, Sadlish H, Rodriguez F, Mayer MP, Bukau B (2006) Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J 25:2510–2518 doi: 10.1038/sj.emboj.7601139 PubMedCrossRefGoogle Scholar
  9. Schweinfest CW, Graber MW, Henderson KW, Papas TS, Baron PL, Watson DK (1998) Cloning and sequence analysis of Hsp89-alpha-delta-N, a new member of theHsp90 gene family. Biochim Biophys Acta 1398:18–24PubMedGoogle Scholar
  10. Stoetzel C, Laurier V, Davis EE et al (2006) BBS10 encodes a vertebrate-specific chaperonin-like protein and is a major BBS locus. Nat Genet 38:521–524 doi: 10.1038/ng1771 PubMedCrossRefGoogle Scholar
  11. Stoetzel C, Muller J, Laurier V et al (2007) Identification of a novel BBS gene (BBS12) highlights the major role of a vertebrate-specific branch of chaperonin-related proteins in Bardet–Biedl syndrome. Am J Hum Genet 80:1–11 doi: 10.1086/510256 PubMedCrossRefGoogle Scholar
  12. Tavaria M, Gabriele T, Kola I, Anderson RL (1996) A hitchhiker's guide to the human Hsp70 family. Cell Stress Chaperones 1:23–28 doi: 10.1379/1466-1268(1996)001<0023:AHSGTT>2.3.CO;2 PubMedCrossRefGoogle Scholar
  13. Walsh P, Bursać D, Law YC, Cyr D, Lithgow T (2004) The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep 5:567–571 doi: 10.1038/sj.embor.7400172 PubMedCrossRefGoogle Scholar
  14. Wheeler DL, Barrett T, Benson DA et al (2008) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 36:D13–D21 doi: 10.1093/nar/gkm1000 PubMedCrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2008

Authors and Affiliations

  • Harm H. Kampinga
    • 1
  • Jurre Hageman
    • 1
  • Michel J. Vos
    • 1
  • Hiroshi Kubota
    • 2
    • 3
  • Robert M. Tanguay
    • 3
    • 4
  • Elspeth A. Bruford
    • 5
  • Michael E. Cheetham
    • 6
  • Bin Chen
    • 7
  • Lawrence E. Hightower
    • 8
  1. 1.Department of Cell Biology, Section of Radiation and Stress Cell Biology, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
  2. 2.Department of Life Science, Faculty of Engineering and Resource ScienceAkita UniversityAkitaJapan
  3. 3.Department of Molecular and Cellular Biology, Institute for Frontier Medical SciencesKyoto UniversityKyotoJapan
  4. 4.Laboratory of Cellular and Developmental Genetics, Department of Medicine and CREFSIPUniversité LavalQuébecCanada
  5. 5.HUGO Gene Nomenclature CommitteeEuropean Bioinformatics Institute (EMBL–EBI)HinxtonUK
  6. 6.UCL Institute of OphthalmologyLondonUK
  7. 7.Institute of Entomology and Molecular Biology, College of Life SciencesChongqing Normal UniversityChongqingPeople’s Republic of China
  8. 8.Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUSA

Personalised recommendations