Cell Stress and Chaperones

, Volume 14, Issue 1, pp 23–31

Activities of the chaperonin containing TCP-1 (CCT): implications for cell cycle progression and cytoskeletal organisation.

Mini Review

Abstract

The chaperonin containing TCP-1 (CCT) is required for the production of native actin and tubulin and numerous other proteins, several of which are involved in cell cycle progression. The mechanistic details of how CCT acts upon its folding substrates are intriguing: whilst actin and tubulin bind in a sequence-specific manner, it is possible that some proteins could use CCT as a more general binding interface. Therefore, how CCT accommodates the folding requirements of its substrates, some of which are produced in a cell cycle-specific manner, is of great interest. The reliance of folding substrates upon CCT for the adoption of their native structures results in CCT activity having far-reaching implications for a vast array of cellular processes. For example, the dependency of the major cytoskeletal proteins actin and tubulin upon CCT results in CCT activity being linked to any cellular process that depends on the integrity of the microfilament and microtubule-based cytoskeletal systems.

Keywords

CCT chaperonin Cytoskeleton Cell cycle Actin Tubulin 

References

  1. Arava Y, Wang Y, Storey JD, Liu CL, Brown PO, Herschlag D (2003) Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 100:3889–3894PubMedCrossRefGoogle Scholar
  2. Behrends C, Langer CA, Boteva R et al (2006) Chaperonin TRiC promotes the assembly of polyQ expansion proteins into non toxic oligomers. Mol Cell 23:887–897PubMedCrossRefGoogle Scholar
  3. Brown CR, Doxsey SJ, Hong-Brown LQ, Martin RL, Welch WJ (1996) Molecular chaperones and the centrosome: a role for TCP-1 in microtubule nucleation. J Biol Chem 271:824–832PubMedCrossRefGoogle Scholar
  4. Camasses A, Bogdanova A, Shevchenko A, Zachariae W (2003) The CCT chaperonin promotes activation of the anaphase-promoting complex through the generation of functional Cdc20. Mol Cell 12:87–100PubMedCrossRefGoogle Scholar
  5. Cleveland DW, Sullivan KF (1985) Molecular biology and genetics of tubulin. Ann Rev Biochem 54:331–366PubMedCrossRefGoogle Scholar
  6. Ellis RJ (1996) Revisiting the Anfinsen cage. Fold Des 1:R9–R15PubMedCrossRefGoogle Scholar
  7. Futcher B, Latter GI, Monardo P, Mclaughlin CS, Garrels JI (1999) A sampling of the yeast proteome. Mol Cell Biol 19:7357–7368PubMedGoogle Scholar
  8. Gomez-Puertas P, Martin-Benito J, Carrascosa JL, Willison KR, Valpuesta JM (2004) The substrate recognition mechanisms in chaperonins. J Mol Recognit 17:85–94PubMedCrossRefGoogle Scholar
  9. Grantham J, Llorca O, Valpuesta JM, Willison KR (2000) Partial occlusion of both cavities of the eukaryotic chaperonin with antibody has no effect upon the rates of beta-actin or alpha-tubulin folding. J Biol Chem. 275:4587–4591PubMedCrossRefGoogle Scholar
  10. Grantham J, Ruddock LW, Roobol A, Carden MJ (2002) Eukaryotic chaperonin containing T-complex polypeptide 1 interacts with filamentous actin and reduces the initial rate of actin polymerization in vitro. Cell Stress Chaperones 7:235–242PubMedCrossRefGoogle Scholar
  11. Grantham J, Brackley KI, Willison KR (2006) Substantial CCT activity is required for cell cycle progression and cytoskeletal organization in mammalian cells. Exp Cell Res 312:2309–2324PubMedCrossRefGoogle Scholar
  12. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858PubMedCrossRefGoogle Scholar
  13. Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115–145PubMedCrossRefGoogle Scholar
  14. Horwich AL, Low KB, Fenton WA, Hirshfield IN, Furtak K (1993) Folding in vivo of bacterial cytoplasmic proteins: role of GroEL. Cell 74:909–917PubMedCrossRefGoogle Scholar
  15. Hynes GM, Willison KR (2000) Individual subunits of the eukaryotic cytosolic chaperonin mediate interactions with binding sites located on subdomains of beta-actin. J Biol Chem 275:18985–18994PubMedCrossRefGoogle Scholar
  16. Kabir MA, Kaminska J, Segel GB et al (2005) Physiological effects of unassembled chaperonin Cct subunits in the yeast Saccharomyces cerevisiae. Yeast 22:219–239PubMedCrossRefGoogle Scholar
  17. Kitamura A, Kubota H, Pack C-G et al (2006) Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state. Nat Cell Biol 8:1163–1170PubMedCrossRefGoogle Scholar
  18. Lacefield S, Soloman F (2003) A novel step in beta-tubulin folding is important for heterodimer formation in Saccharomyces cerevisiae. Genetics 165:531–541PubMedGoogle Scholar
  19. Lackner DH, Beilharz TH, Marguerat S, Mata S, Watt S, Schubert F, Preiss T, Bähler J (2007) A network of multiple regulatory layers shapes gene expression in fisson yeast. Mol Cell 26:145–155PubMedCrossRefGoogle Scholar
  20. Lewis SA, Tian G, Cowan NJ (1997) The alpha- and beta-tubulin folding pathways. Trends Cell Biol 7:479–484PubMedCrossRefGoogle Scholar
  21. Lin P, Sherman F (1997) The unique hetero-oligomeric nature of the subunits in the catalytic cooperativity of the yeast Cct chaperonin complex. Proc Natl Acad Sci U S A 94:10780–10785PubMedCrossRefGoogle Scholar
  22. Liou AKF, Willison KR (1997) Elucidation of the subunit orientation in CCT (chaperonin containing TCP1) from the subunit composition of CCT micro-complexes. EMBO J 16:4311–4316PubMedCrossRefGoogle Scholar
  23. Liou AKF, McCormack EA, Willison KR (1998) The chaperonin containing TCP-1 (CCT) displays a single-ring mediated disassembly and reassembly cycle. Biol Chem 379:311–319PubMedCrossRefGoogle Scholar
  24. Liu X, Lin C-Y, Lei M, Lan S, Zhou T, Erikson RL (2005) CCT chaperonin complex is required for the biogenesis of functional Plk1. Mol Cell Biol 25:4993–5010PubMedCrossRefGoogle Scholar
  25. Llorca O, McCormack EA, Hynes G et al (1999) Eukaryotic type II chaperonin CCT interacts with actin through specific subunits. Nature 402:693–696PubMedCrossRefGoogle Scholar
  26. Llorca O, Martin-Benito J, Ritco-Vonsovici M, Grantham J, Hynes GM, Willison KR, Carrascosa JL, Valpuesta JM (2000) Eukaryotic chaperonin CCT stabilizes actin and tubulin folding intermediates in open quasi-native conformations. EMBO J 19:5971–5979PubMedCrossRefGoogle Scholar
  27. Llorca O, Martin-Benito J, Grantham J, Ritco-Vonsovici M, Willison KR, Carrascosa JL Valpuesta JM (2001) The ‘sequential allosteric ring’ mechanism in the eukaryotic chaperonin- assisted folding of actin and tubulin. EMBO J 20:4065–4075PubMedCrossRefGoogle Scholar
  28. Martin-Benito J, Bertrand S, Hu T, Ludtke PJ, McLaughlin JN, Willardson BM, Carrascosa JL, Valpuesta JM (2004) Structure of the complex between the cytosolic chaperonin CCT and phosducin-like protein. Proc Natl Acad Sci U S A 101:17410–17415PubMedCrossRefGoogle Scholar
  29. Martin-Benito J, Grantham J, Boskovic J, Brackley KI, Carrascosa JL, Willison KR, Valpuesta JM (2007) The inter-ring arrangement of the cytosolic chaperonin CCT. EMBO Rep 8:252–257PubMedCrossRefGoogle Scholar
  30. McLaughlin JN, Thulin CD, Hart SJ, Resing KA, Ahn NG, Willardson BM (2002) Regulatory interaction of phosducin-like protein with the cytosolic chaperonin complex. Proc Natl Acad Sci U S A 99:7962–7967PubMedCrossRefGoogle Scholar
  31. Melki R, Batelier G, Soulie S, Williams RC (1997) Cytoplasmic chaperonin containing TCP-1: structural and functional characterisation. Biochemistry 36:5817–5826PubMedCrossRefGoogle Scholar
  32. Mellville MW, McClellan AJ, Meyer AS, Darveau A, Frydman J (2003) The Hsp70 and TRiC/CCT chaperone systems cooperate in vivo to assemble the von Hippel-Linau tumor suppressor complex. Mol Cell Biol 23:3141–3151CrossRefGoogle Scholar
  33. Neirynck K, Waterschoot D, Vandekerckhove J, Ampe C, Rommelaere H (2006) Actin interacts with CCT via discrete binding sites: a binding transition-release model for CCT mediated actin folding. J Mol Biol 355:124–138PubMedCrossRefGoogle Scholar
  34. Pappenberger G, Wilsher JA, Roe SM, Counsell DJ, Willison KR, Pearl LH (2002) Crystal structure of the CCTgamma apical domain: implications for substrate binding to the eukaryotic cytosolic chaperonin. J Mol Biol 318:1367–1379PubMedCrossRefGoogle Scholar
  35. Pappenberger G, McCormack EA, Willison KR (2006) Quantitative actin folding reactions using yeast CCT purified via an internal tag in the CCT3/γ subunit. J Mol Biol 360:484–496PubMedCrossRefGoogle Scholar
  36. Passmore LA, McCormack EA, Au SWN, Paul A, Willison KR, Harper JW, Barford D (2003) Doc1 mediates the activity of the anaphase-promoting complex by contributing to substrate recognition. EMBO J 22:786–796PubMedCrossRefGoogle Scholar
  37. Posern G, Triesman R (2006) Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol 16:588–596PubMedCrossRefGoogle Scholar
  38. Rademacher F, Kehren V, Stoldt VR, Ernst JF (1998) A Candida albicans chaperonin subunit (CaCct8p) as a suppressor of morphogenesis and Ras phenotypes in C. albicans and Saccharomyces cerevisiae. Microbiology 144:2951–2960PubMedCrossRefGoogle Scholar
  39. Roobol A, Holmes FE, Hayes NVL, Baines AJ, Carden MJ (1995) Cytoplasmic chaperonin complexes enter neurites developing in vitro and differ in subunit composition within single cells. J Cell Sci 108:1477–1488PubMedGoogle Scholar
  40. Roobol A, Grantham J, Whitaker HC, Carden MJ (1999a) Disassembly of the cytosolic chaperonin in mammalian cell extracts at intracellular levels of K + and ATP. J Biol Chem 274:19220–19227PubMedCrossRefGoogle Scholar
  41. Roobol A, Sahyoun ZP, Carden MJ (1999b) Selected subunits of the cytosolic chaperonin associate with microtubules assembled in vitro. J Biol Chem 274:2408–2415PubMedCrossRefGoogle Scholar
  42. Rivenzon-Segal D, Wolf SG, Shimon L, Willison KR, Horovitz A (2005) Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis. Nat Struct Biol 12:233–237CrossRefGoogle Scholar
  43. Shimon L, Hynes GM, McCormack EA, Willison KR Horovitz A (2008) ATP-induced allostery in the eukaryotic chaperonin CCT is abolished by the mutation G345D in CCT4 that renders yeast temperature sensitive for growth. J Mol Biol 377:469–477PubMedCrossRefGoogle Scholar
  44. Soues S, Kann M-L, Fouquet J-P, Melki R (2003) The cytosolic chaperonin CCT associates to cytoplasmic microtubular structures during mammalian spermiogenesis and to heterochromatin in germline and somatic cells. Exp Cell Res 288:363–373PubMedCrossRefGoogle Scholar
  45. Srikakulam R, Winkelmann DA (1999) Myosin II folding is mediated by a molecular chaperonin. J Biol Chem 274:27265–27273PubMedCrossRefGoogle Scholar
  46. Stemp MJ, Guha S, Hartl FU, Barral JM (2005) Efficient production of native actin upon translation in a bacterial lysate supplemented with the eukaryotic chaperonin TRiC. Biol Chem 386:753–757PubMedCrossRefGoogle Scholar
  47. Sternlicht H, Farr GW, Sternlicht ML, Driscoll JK, Willison K, Yaffe MB (1993) The t-complex polypeptide 1 is a chaperonin for tubulin and actin in vivo. Proc Natl Acad Sci U S A 90:9422–9426PubMedCrossRefGoogle Scholar
  48. Stirling PC, Cuellar J, Alfaro GA, Khadali FE, Beh CT, Valpuesta JM, Melki R, Leroux MR (2006) PhLP3 Modulates CCT-mediated actin and tubulin folding via ternary complexes with substrate. J Biol Chem 281:7012–7021PubMedCrossRefGoogle Scholar
  49. Stirling PC, Srayko M, Takhar KS, Pozniakovsky A, Hyman AA, Leroux MR (2007) Functional interaction between Phosducin-like Protein 2 and cytosolic chaperonin is essential for cytoskeletal protein function and cell cycle progression. Mol Biol Cell 18:2336–2345PubMedCrossRefGoogle Scholar
  50. Stoldt V, Rademacher F, Kehren V, Ernst JF, Pearce DA, Sherman F (1996) Review: the Cct eukaryotic chaperonin subunits of Saccharomyces cerevisiae and other yeasts. Yeast 12:523–529PubMedCrossRefGoogle Scholar
  51. Tam S, Geller R, Speiss C, Frydman J (2006) The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat Cell Biol 8:1155–1162PubMedCrossRefGoogle Scholar
  52. Valpuesta JM, Martin-Benito J, Gomez-Puertas P, Carrascosa JL, Willison KR (2002) Structure and function of a protein folding machine: the eukaryotic cytosolic chaperonin CCT. FEBS Lett 529:11–16PubMedCrossRefGoogle Scholar
  53. Vinh DB, Drubin DG (1994) A yeast TCP-1-like protein is required for actin function in vivo. Proc Natl Acad Sci U S A 91:9116–9120PubMedCrossRefGoogle Scholar
  54. Weinstein B, Soloman F (1990) Phenotypic consequences of tubulin overproduction in Saccharomyces cerevisiae: differences between alpha-tubulin and beta-tubulin. Mol Cell Biol 10:5295–5304PubMedGoogle Scholar
  55. Weissman JS, Hohl CM, Kovalenko O et al (1995) Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell 83:577–587PubMedCrossRefGoogle Scholar
  56. Willardson BM, Howlett AC (2007) Function of phosducin-like proteins in G protein signalling and chaperone assisted folding. Cell Signal 19:2417–2427PubMedCrossRefGoogle Scholar
  57. Won KA, Schumacher RJ, Farr GW, Horwich AL, Reed SI (1998) Maturation of human cyclin E requires the function of eukaryotic chaperonin CCT. Mol Cell Biol 18:7584–7589PubMedGoogle Scholar
  58. Yokota S, Yanagi H, Yura T, Kubota H (1999) Cytosolic chaperonin is up-regulated during cell growth. J Biol Chem 274:37070–37078PubMedCrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2008

Authors and Affiliations

  1. 1.Department of Cell and Molecular BiologyGöteborgs UniversitetGöteborgSweden

Personalised recommendations