Cell Stress and Chaperones

, Volume 14, Issue 1, pp 71–82 | Cite as

RDJ2 (DNAJA2) chaperones neural G protein signaling pathways

  • Alma Rosales-Hernandez
  • Katy E. Beck
  • Xiaoxi Zhao
  • Andrew P. Braun
  • Janice E. A. Braun
Original Paper

Abstract

A number of structurally divergent proteins with J domains, called J proteins, interact with and activate the ATPase of Hsp70s, thereby harnessing the ATPase activity for conformational work on target proteins. The precise role of most mammalian J proteins remains undefined. In this paper, we demonstrate that transient expression of the J protein, Rdj2, in HEK 293 cells increased cellular cyclic adenosine monophosphate (cAMP) levels in the presence of the β-adrenergic agonist isoproterenol. In CNS-derived catecholaminergic neuronal cell line (CAD) neuroblastoma cells, expression of Rdj2 increased isoproterenol-stimulated phosphorylation of cAMP response element binding protein (CREB). Moreover, we have characterized the binding properties of Rdj2 and observed a direct interaction between Rdj2 and receptor-coupled trimeric GTP-binding proteins (G proteins). We further show that the composition of the Rdj2-chaperone complex and the cysteine string protein (CSPα)-chaperone complex, another J protein, is distinct. Our data demonstrate that Rdj2 modulates G protein signaling and further suggest that chaperoning G proteins is an emerging theme of the J protein network.

Keywords

Rdj2 J protein CSPα Cysteine string protein G protein 

Supplementary material

12192_2008_56_MOESM1_ESM.pdf (93 kb)
Supplementary Figure 1(A) Length of the J domain, DnaJ central region, and DnaJ C-terminal region for DnaJ, Ydj1, Rdj2, and CSPα. InterProScan was used to identify the domains. (B) Amino acid homology between the J domains of DnaJ, Ydj1, Rdj2, and CSPα. (C) Amino acid homology between the full-length sequences of DnaJ, Ydj1, and Rdj2 (PDF 93.2 KB)

References

  1. Andres DA, Shao H, Crick DC, Finlin BS (1997) Expression cloning of a novel farnesylated protein, RDJ2, encoding a DnaJ protein homologue. Arch Biochem Biophys 346:113–124PubMedCrossRefGoogle Scholar
  2. Arndt V, Rogon C, Hohfeld J (2007) To be, or not to be – molecular chaperones in protein degradation. Cell Mol Life Sci 64(19–20):2525–2541PubMedCrossRefGoogle Scholar
  3. Bai L, Swayne LA, Braun JE (2007) The CSPalpha/G protein complex in PC12 cells. Biochem Biophys Res Commun 352:123–129PubMedCrossRefGoogle Scholar
  4. Beck KE, Kay JG, Braun JE (2006) Rdj2, a J protein family member, interacts with cellular prion PrP(C). Biochem Biophys Res Commun 346:866–871PubMedCrossRefGoogle Scholar
  5. Blondeau F, Ritter B, Allaire PD, Wasiak S, Girard M, Hussain NK, Angers A, Legendre-Guillemin V, Roy L, Boismenu D, Kearney RE, Bell AW, Bergeron JJ, McPherson PS (2004) Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. Proc Natl Acad Sci USA 101:3833–3838PubMedCrossRefGoogle Scholar
  6. Braun JE, Scheller RH (1995) Cysteine string protein, a DnaJ family member, is present on diverse secretory vesicles. Neuropharmacology 34:1361–1369PubMedCrossRefGoogle Scholar
  7. Braun JE, Wilbanks SM, Scheller RH (1996) The cysteine string secretory vesicle protein activates Hsc70 ATPase. J Biol Chem 271:25989–25993PubMedCrossRefGoogle Scholar
  8. Brown H, Larsson O, Branstrom R, Yang S, Leibiger B, Leibiger I, Fried G, Moede T, Deeney JT, Brown GR, Jacobsson G, Rhodes CJ, Braun JE, Scheller RH, Corkey BE, Berggren P, Meister B (1998) Cysteine string protein (CSP) is an insulin secretory granule-associated protein regulating beta-cell exocytosis. EMBO J 17:5048–5058PubMedCrossRefGoogle Scholar
  9. Caplan AJ, Douglas MG (1991) Characterization of YDJ1: a yeast homologue of the bacterial dnaJ protein. J Cell Biol 114:609–621PubMedCrossRefGoogle Scholar
  10. Chamberlain LH, Henry J, Burgoyne RD (1996) Cysteine string proteins are associated with chromaffin granules. J Biol Chem 271:19514–19517PubMedCrossRefGoogle Scholar
  11. Chang HC, Hull M, Mellman I (2004) The J-domain protein Rme-8 interacts with Hsc70 to control clathrin-dependent endocytosis in Drosophila. J Cell Biol 164:1055–1064PubMedCrossRefGoogle Scholar
  12. Chapple JP, Cheetham ME (2003) The chaperone environment at the cytoplasmic face of the endoplasmic reticulum can modulate rhodopsin processing and inclusion formation. J Biol Chem 278:19087–19094PubMedCrossRefGoogle Scholar
  13. Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36PubMedCrossRefGoogle Scholar
  14. Cheetham ME, Jackson AP, Anderton BH (1994) Regulation of 70-kDa heat-shock-protein ATPase activity and substrate binding by human DnaJ-like proteins, HSJ1a and HSJ1b. Eur J Biochem 226:99–107PubMedCrossRefGoogle Scholar
  15. Craig EA, Huang P, Aron R, Andrew A (2006) The diverse roles of J-proteins, the obligate Hsp70 co-chaperone. Rev Physiol Biochem Pharmacol 156:1–21PubMedCrossRefGoogle Scholar
  16. Dupre DJ, Robitaille M, Richer M, Ethier N, Mamarbachi AM, Hebert TE (2007) Dopamine receptor-interacting protein 78 acts as a molecular chaperone for Ggamma subunits before assembly with Gbeta. J Biol Chem 282:13703–13715PubMedCrossRefGoogle Scholar
  17. Eisenberg E, Greene LE (2007) Multiple roles of auxilin and hsc70 in clathrin-mediated endocytosis. Traffic 8:640–646PubMedCrossRefGoogle Scholar
  18. Frydman J, Hohfeld J (1997) Chaperones get in touch: the Hip-Hop connection. Trends Biochem Sci 22:87–92PubMedCrossRefGoogle Scholar
  19. Georgopoulos CP, Lundquist-Heil A, Yochem J, Feiss M (1980) Identification of the E. coli dnaJ gene product. Mol Gen Genet 178:583–588PubMedCrossRefGoogle Scholar
  20. Kohan SA, Pescatori M, Brecha NC, Mastrogiacomo A, Umbach JA, Gundersen CB (1995) Cysteine string protein immunoreactivity in the nervous system and adrenal gland of rat. J Neurosci 15:6230–6238PubMedGoogle Scholar
  21. Magga JM, Jarvis SE, Arnot MI, Zamponi GW, Braun JE (2000) Cysteine string protein regulates G-protein modulation of N-type calcium channels. Neuron 28:195–204PubMedCrossRefGoogle Scholar
  22. Manzerra P, Brown IR (1996) The neuronal stress response: nuclear translocation of heat shock proteins as an indicator of hyperthermic stress. Exp Cell Res 229:35–47PubMedCrossRefGoogle Scholar
  23. Manzerra P, Rush SJ, Brown IR (1997) Tissue-specific differences in heat shock protein hsc70 and hsp70 in the control and hyperthermic rabbit. J Cell Physiol 170:130–137PubMedCrossRefGoogle Scholar
  24. Mastrogiacomo A, Parsons SM, Zampighi GA, Jenden DJ, Umbach JA, Gundersen CB (1994) Cysteine string proteins: a potential link between synaptic vesicles and presynaptic Ca2+ channels. Science 263:981–982PubMedCrossRefGoogle Scholar
  25. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684PubMedCrossRefGoogle Scholar
  26. Miller LC, Swayne LA, Chen L, Feng ZP, Wacker JL, Muchowski PJ, Zamponi GW, Braun JEA (2003a) Cysteine String Protein (CSP) inhibition of N-type calcium channels is blocked by mutant huntingtin. J Biol Chem 278:53072–53081PubMedCrossRefGoogle Scholar
  27. Miller LC, Swayne LA, Kay JG, Feng ZP, Jarvis SE, Zamponi GW, Braun JEA (2003b) Molecular detrminants of cysteine string protien modulation of N-type calcium channels. J Cell Sci 116:2967–2974PubMedCrossRefGoogle Scholar
  28. Muchowski PJ (2002) Protein misfolding, amyloid formation, and neurodegeneration: a critical role for moleclar chaperones. Neuron 35:9–12PubMedCrossRefGoogle Scholar
  29. Natochin M, Campbell TN, Barren B, Miller LC, Hameed S, Artemyev NO, Braun JE (2005) Characterization of the G alpha(s) regulator cysteine string protein. J Biol Chem 280:30236–30241PubMedCrossRefGoogle Scholar
  30. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453PubMedCrossRefGoogle Scholar
  31. Ohlsson H, Brunner N, Engelholm LH, Lundholt BK, Weidle U, Briand P, Lykkesfeldt AE (2001) Identification of two estrogen regulated genes associated with growth regulation of human breast cancer. Mol Cell Endocrinol 182:1–11PubMedCrossRefGoogle Scholar
  32. Ohtsuka K, Hata M (2000) Mammalian HSP40/DNAJ homologs: cloning of novel cDNAs and a proposal for their classification and nomenclature. Cell Stress Chaperones 5:98–112PubMedCrossRefGoogle Scholar
  33. Prodromou C, Pearl LH (2003) Structure and functional relationships of Hsp90. Curr Cancer Drug Targets 3:301–323PubMedCrossRefGoogle Scholar
  34. Qiu XB, Shao YM, Miao S, Wang L (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 63:2560–2570PubMedCrossRefGoogle Scholar
  35. Sahi C, Craig EA (2007) Network of general and specialty J protein chaperones of the yeast cytosol. Proc Natl Acad Sci USA 104:7163–7168PubMedCrossRefGoogle Scholar
  36. Sakisaka T, Meerlo T, Matteson J, Plutner H, Balch WE (2002) rab-alphaGDI activity is regulated by a Hsp90 chaperone complex. EMBO 21:6125–6135CrossRefGoogle Scholar
  37. Sever S, Skoch J, Newmyer S, Ramachandran R, Ko D, McKee M, Bouley R, Ausiello D, Hyman BT, Bacskai BJ (2006) Physical and functional connection between auxilin and dynamin during endocytosis. EMBO J 25:4163–4174PubMedCrossRefGoogle Scholar
  38. Shaner L, Morano KA (2007) All in the family: atypical Hsp70 chaperones are conserved modulators of Hsp70 activity. Cell Stress Chaperones 12:1–8PubMedCrossRefGoogle Scholar
  39. Stahl B, Tobaben S, Sudhof TC (1999) Two distinct domains in hsc70 are essential for the interaction with the synaptic vesicle cysteine string protein. Eur J Cell Biol 78:375–381PubMedGoogle Scholar
  40. Ungewickell E, Ungewickell H, Holstein SEH, Linder R, Prasad K, Barouch W, Martin B, Greene LE, Eisenberg E (1995) Role of auxilin in uncoating clathrin-coated vesicles. Nature 378:632–635PubMedCrossRefGoogle Scholar
  41. Zhao CM, Jacobsson G, Chen D, Hakanson R, Meister B (1997) Exocytotic proteins in enterochromaffin-like (ECL) cells of the rat stomach. Cell Tissue Res 290:539–551PubMedCrossRefGoogle Scholar
  42. Zhao X, Braun AP, Braun JE (2008) Biological roles of neural J proteins. Cell Mol Life Sci, in pressGoogle Scholar

Copyright information

© Cell Stress Society International 2008

Authors and Affiliations

  • Alma Rosales-Hernandez
    • 1
  • Katy E. Beck
    • 1
  • Xiaoxi Zhao
    • 1
  • Andrew P. Braun
    • 2
  • Janice E. A. Braun
    • 1
  1. 1.Hotchkiss Brain Institute, Department of Physiology and BiophysicsUniversity of CalgaryCalgaryCanada
  2. 2.Libin Cardiovascular Institute of Alberta, Department of Pharmacology and TherapeuticsUniversity of CalgaryCalgaryCanada

Personalised recommendations