Finite element methods for non-fourier thermal wave model of bio heat transfer with an interface

  • Bhupen DekaEmail author
  • Jogen Dutta
Original Research


We propose a fitted finite element method for non-Fourier bio heat transfer model in multi-layered media. Specifically, we employ the Maxwell–Cattaneo equation on the physical media that have a heterogeneous conductivity. Well-posedness of the model interface problem is established. A continuous piecewise linear finite element space is employed for the spatially semidiscrete approximation and the temporal discretization is based on backward scheme. Optimal order error estimates for both semidiscrete and fully discrete schemes are proved in \(L^{\infty }(H^1)\) norm. Finally, we give numerical examples to verify our theoretical results. The new results and finite element schemes can be applied in the fields of engineering, medicine, and biotechnology.


Interface Heat transfer Finite element method Optimal error estimate 

Mathematics Subject Classification

65M60 65N15 78M30 



  1. 1.
    Adams, R., Fournier, J.: Sobolev Spaces, sec edn. Academic Press, Amsterdam (2003)zbMATHGoogle Scholar
  2. 2.
    Ammari, H., Chen, D., Zou, J.: Well-posedness of an electric interface model and its finite element approximation. Math. Models Methods Appl. Sci. 26(3), 601–625 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arkin, H., Xu, L., Holmes, K.: Recent developments in modeling heat transfer in blood perfused tissues. IEEE Trans. Biomed. Eng. 41(2), 97–107 (1994)CrossRefGoogle Scholar
  4. 4.
    Bamberger, A., Glowinski, R., Tran, Q.H.: A domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid change. SIAM J. Numer. Anal. 34(2), 603–639 (1997)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Basson, M., Stapelberg, B., van Rensburg, N.F.J.: Error estimates for semi-discrete and fully discrete Galerkin finite element approximations of the general linear second-order hyperbolic equation. Numer. Funct. Anal. Optim. 38(4), 466–485 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Birkebak, R.C.: Heat transfer in biological systems. Int. Rev. Gen. Exp. Zool. 2, 269–344 (1966)CrossRefGoogle Scholar
  7. 7.
    Bischof, J.C.: Micro and nanoscale phenomenon in bioheat transfer. Heat Mass Transf. 42(10), 955 (2006)CrossRefGoogle Scholar
  8. 8.
    Bowman, H.F., Cravalho, E.G., Woods, M.: Theory, measurement, and application of thermal properties of biomaterials. Ann. Rev. Biophys. Bioeng. 4(1), 43–80 (1975)CrossRefGoogle Scholar
  9. 9.
    Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (1994)CrossRefGoogle Scholar
  10. 10.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, vol. 15. Springer, Berlin (2012)zbMATHGoogle Scholar
  11. 11.
    Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79(2), 175–202 (1998)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ciarlet Jr., P., Zou, J.: Fully discrete finite element approaches for time-dependent Maxwell’s equations. Numer. Math. 82(2), 193–219 (1999)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dai, W., Wang, H., Jordan, P.M., Mickens, R.E., Bejan, A.: A mathematical model for skin burn injury induced by radiation heating. Int. J. Heat Mass Transf. 51(23–24), 5497–5510 (2008)CrossRefGoogle Scholar
  14. 14.
    Deka, B.: A priori \(L^\infty (L^2)\) error estimates for finite element approximations to the wave equation with interface. Appl. Numer. Math. 115, 142–159 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Deka, B., Ahmed, T.: Convergence of finite element method for linear second-order wave equations with discontinuous coefficients. Numer. Methods Partial Differ. Equ. 29(5), 1522–1542 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Huang, J., Zou, J.: Some new a priori estimates for second-order elliptic and parabolic interface problems. J. Differ. Equ. 184(2), 570–586 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61(1), 41 (1989)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Joshi, A., Majumdar, A.: Transient ballistic and diffusive phonon heat transport in thin films. J. Appl. Phys. 74(1), 31–39 (1993)CrossRefGoogle Scholar
  19. 19.
    Kumar, P., Kumar, D., Rai, K.: A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment. J. Therm. Biol. 49, 98–105 (2015)CrossRefGoogle Scholar
  20. 20.
    Ladyzhenskaya, O.A., Rivkind, V.Y., Ural’tseva, N.N.: The classical solvability of diffraction problems. Trudy Matematicheskogo Instituta imeni VA Steklova 92, 116–146 (1966)zbMATHGoogle Scholar
  21. 21.
    Li, J., Melenk, J.M., Wohlmuth, B., Zou, J.: Optimal a priori estimates for higher order finite elements for elliptic interface problems. Appl. Numer. Math. 60(1–2), 19–37 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Liu, K.-C., Wang, Y.-N., Chen, Y.-S.: Investigation on the bio-heat transfer with the dual-phase-lag effect. Int. J. Therm. Sci. 58, 29–35 (2012)CrossRefGoogle Scholar
  23. 23.
    Mitra, K., Kumar, S., Vedevarz, A., Moallemi, M.: Experimental evidence of hyperbolic heat conduction in processed meat. J. Heat Transf. 117(3), 568–573 (1995)CrossRefGoogle Scholar
  24. 24.
    Narasimhan, A., Sadasivam, S.: Non-fourier bio heat transfer modelling of thermal damage during retinal laser irradiation. Int. J. Heat Mass Transf. 60, 591–597 (2013)CrossRefGoogle Scholar
  25. 25.
    Pennes, H.H.: Analysis of tissue and arterial temperature in the resting human forearm. J. Appl. Physiol. 1(2), 93–122 (1948)CrossRefGoogle Scholar
  26. 26.
    Robinson, J.C.: Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, vol. 28. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  27. 27.
    Rodrigues, D., Pereira, P., Limão-Vieira, P., Stauffer, P., Maccarini, P.F.: Study of the one dimensional and transient bioheat transfer equation: multi-layer solution development and applications. Int. J. Heat Mass Transf. 62, 153–162 (2013)CrossRefGoogle Scholar
  28. 28.
    Semenyuk, V.: Prediction of temperature and damage in an irradiated human eye during retinal photocoagulation. Int. J. Heat Mass Transf. 126, 306–316 (2018)CrossRefGoogle Scholar
  29. 29.
    Showalter, R.E.: Hilbert Space Methods in Partial Differential Equations. Courier Corporation, North Chelmsford (2010)Google Scholar
  30. 30.
    Singh, S., Singh, S., Li, Z.: A high order compact scheme for a thermal wave model of bio-heat transfer with an interface. Numer. Math. Theory Methods Appl. 11(2), 321–337 (2018)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Sinha, R.K., Deka, B.: Optimal error estimates for linear parabolic problems with discontinuous coefficients. SIAM J. Numer. Anal. 43(2), 733–749 (2005)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Sinha, R.K., Deka, B.: A priori error estimates in the finite element method for nonself-adjoint elliptic and parabolic interface problems. Calcolo 43(4), 253–277 (2006)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Sinha, R.K., Deka, B.: An unfitted finite-element method for elliptic and parabolic interface problems. IMA J. Numer. Anal. 27(3), 529–549 (2007)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Tzou, D.Y.: Macro-to Microscale Heat Transfer: The Lagging Behavior. Wiley, Hoboken (2014)CrossRefGoogle Scholar
  35. 35.
    Van Rensburg, N., Van Der Merwe, A.: Analysis of the solvability of linear vibration models. Appl. Anal. 81(5), 1143–1159 (2002)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Xu, F., Lu, T., Seffen, K., Ng, E.: Mathematical modeling of skin bioheat transfer. Appl. Mech. Rev. 62(5), 050801 (2009)CrossRefGoogle Scholar

Copyright information

© Korean Society for Informatics and Computational Applied Mathematics 2019

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology GuwahatiNorth GuwahatiIndia

Personalised recommendations