Advertisement

Legendre wavelet solution of neutral differential equations with proportional delays

  • Sevin GümgümEmail author
  • Demet Ersoy Özdek
  • Gökçe Özaltun
  • Necdet Bildik
Original Research
  • 20 Downloads

Abstract

The aim of this paper is to solve neutral differential equations with proportional delays by using Legendre wavelet method. Using orthonormal polynomials is the main advantage of this method since it enables a decrease in the computational cost and runtime. Some examples are displayed to illustrate the efficiency and accuracy of the proposed method. Numerical results are compared with various numerical methods in literature and show that the present method is very effectual in solving neutral differential equations with proportional delays.

Keywords

Legendre wavelets Neutral differential equations Proportional delays 

Mathematics Subject Classification

34K40 65L05 40C05 

Notes

References

  1. 1.
    Chen, X., Wang, L.: The variational iteration method for solving a neutral functional-differential equation with proportional delays. Comput. Math. Appl. 59, 2696–2702 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ghaneai, H., Hosseini, M.M., Mohyud-Din, S.T.: Modified variational iteration method for solving a neutral functional-differential equation with proportional delays. Int. J. Numer. Methods Heat Fluid Flow 22(8), 1086–1095 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Abolhasani, M., Ghaneai, H., Heydari, M.: Modified homotopy perturbation method for solving delay differential equations. Appl. Sci. Rep. 16(2), 89–92 (2010)Google Scholar
  4. 4.
    Biazar, J., Ghanbari, B.: The homotopy perturbation method for solving neutral functional-differential equations with proportional delays. J. King Saud Univ. Sci. 24, 33–37 (2012)CrossRefGoogle Scholar
  5. 5.
    Sakar, M.G.: Numerical solution of neutral functional-differential equations with proportional delays. Int. J. Optim. Control Theor. Appl. 7(2), 186–194 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Rebenda, J., Šmarda, Z., Khan, Y.: A Taylor method approach for solving of nonlinear systems of functional differential equations with delay. arXiv:1506.0564v1 [math.CA] (2015)
  7. 7.
    Bhrawy, A.H., Assas, L.M., Tohidi, E., Alghamdi, M.A.: A Legendre–Gauss collocation method for neutral functional-differential equations with proportional delays. Adv. Differ. Equ. 2013, 63 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bhrawy, A.H., Alghamdi, M.A., Baleanu, D.: Numerical solution of a class of functional-differential equations using Jacobi pseudospectral method. Abstr. Appl. Anal. 2013, 9 pages (2013)Google Scholar
  9. 9.
    Ghomanjani, F., Farahi, M.H.: The Bezier control points method for solving delay differential equation. Intell. Control Autom. 3, 188–196 (2012)CrossRefGoogle Scholar
  10. 10.
    Lv, X., Gao, Y.: The RKHSM for solving neutral functional-differential equations with proportional delays. Math. Methods Appl. Sci. 36, 642–649 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cheng, X., Chen, Z., Zhang, Q.: An approximate solution for a neutral functional-differential equation with proportional delays. Appl. Math. Comput. 260, 27–34 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Ibis, B., Bayram, M.: Numerical solution of the neutral functional-differential equations with proportional delays via collocation method based on Hermite polynomials. Commun. Math. Model. Appl. 1(3), 22–30 (2016)Google Scholar
  13. 13.
    Cǎruntu, B., Bota, C.: Analytical approximate solutions for a general class of nonlinear delay differential equations. Sci. World J. 2014, 6 pages (2014)Google Scholar
  14. 14.
    Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations, Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York (2003)CrossRefzbMATHGoogle Scholar
  15. 15.
    Wang, W., Li, S.: On the one-leg-methods for solving nonlinear neutral functional differential equations. Appl. Math. Comput. 193(1), 285–301 (2007)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Yüzbaşı, Ş., Sezer, M.: Shifted Legendre approximation with the residual correction to solve pantograph-delay type differential equations. Appl. Math. Model. 39, 6529–6542 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sedaghat, S., Ordokhani, Y., Dehghan, M.: Numerical solution of delay differential equations of pantograph type via Chebyshev polynomials. Commun. Nonlinear Sci. Numer. Simul. 17, 4815–4830 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mohammadi, F., Hosseini, M.M.: A new Legendre wavelet operational matrix of derivative and its applications in solving the singular ordinary differential equations. J. Frankl. Inst. 348, 1787–1796 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Goswami, J.C., Chan, A.K.: Fundamentals of Wavelets, Theory, Algorithms and Applications. Wiley, New York (2011)CrossRefzbMATHGoogle Scholar
  20. 20.
    Boggess, A., Narcowich, F.J.: A First Course in Wavelets with Fourier Analysis. Wiley, New York (2001)zbMATHGoogle Scholar
  21. 21.
    Gu, J.S., Jiang, W.S.: The Haar wavelets operational matrix of integration. Int. J. Syst. Sci. 27, 623–628 (1996)CrossRefzbMATHGoogle Scholar
  22. 22.
    Razzaghi, M., Yousefi, S.: Legendre wavelets operational matrix of integration. Int. J. Syst. Sci. 32, 495–502 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mohammadi, F., Hosseini, M.M.: Legendre wavelet method for solving linear stiff systems. J. Adv. Res. Differ. Equ. 2, 47–57 (2010)Google Scholar
  24. 24.
    Mohammadi, F., Hosseini, M.M., Mohyud-Din, S.T.: Legendre wavelet Galerkin method for solving ordinary differential equations with nonanalytic solution. Int. J. Syst. Sci. 42, 579–585 (2011)CrossRefzbMATHGoogle Scholar
  25. 25.
    Babolian, E., Fattahzadeh, F.: Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration. Appl. Math. Comput. 188, 417–426 (2007)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Kythe, P.K., Schäferkotter, M.R.: Handbook of Computational Methods for Integration. Chapman and Hall/CRC Press, Boca Raton (2011)zbMATHGoogle Scholar
  27. 27.
    Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)CrossRefzbMATHGoogle Scholar
  28. 28.
    Yousefi, S.A.: Legendre scaling function for solving generalized Emden–Fowler equations. Int. J. Inf. Syst. Sci. 3, 243–250 (2007)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists, 6th edn. Elsevier Academic Press, London (2005)zbMATHGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2019

Authors and Affiliations

  1. 1.Department of MathematicsIzmir University of EconomicsIzmirTurkey
  2. 2.Department of MathematicsCelal Bayar UniversityManisaTurkey

Personalised recommendations