Isogeometric analysis on non-matching segmentation: discontinuous Galerkin techniques and efficient solvers

  • Christoph Hofer
  • Ulrich Langer
  • Ioannis ToulopoulosEmail author
Original Research


One challenging task in Isogeometric Analysis (IGA) is the segmentation of domains, which are represented via their boundaries, e.g. arising from a computer aided design model, into suitable blocks and the construction of their spline parametrizations. This yields a multipatch description of the domain. However, errors can occur during the computation of the associated control points when constructing the spline parametrizations of a patch. This leads to the derivation of non-matching interface parametrizations, i.e. gap and overlapping regions can appear between the patch interfaces. In this paper, we develop discontinuous Galerkin techniques in the context of IGA for solving elliptic diffusion problems on multipatch domains which can include gap and overlapping regions. This work is the continuation of two previous works, where we presented a complete discretization analysis for the case of having only gap regions. Here we focus on a unified presentation of the method for general gap and overlapping regions, and the development of efficient domain decomposition solvers based on tearing and interconnecting technology. In addition, we investigate the influence of the size of the gap/overlapping regions on the performance of the proposed solvers. Comparisons are shown and implementation issues are discussed on actual numerical examples.


Elliptic diffusion problems Heterogeneous diffusion coefficients Isogeometric analysis Discontinuous Galerkin methods Multipatch domain representations Non-matching interface parametrizations IETI-DP domain decomposition solvers 

Mathematics Subject Classification

65M12 65M15 65M55 



This work was supported by the Austrian Science Fund (FWF) under the Grant NFN S117-03 and W1214-N15, Project DK4. The third author was further supported by the Project: COMET K2 XTribology, No. 849109; Project grantee: Excellence Center of Tribology.


  1. 1.
    Apostolatos, A., Schmidt, R., Wüchner, R., Bletzinger, K.U.: A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis. Int. J. Numer. Methods Eng. 97, 473–504 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bercovier, M., Soloveichik, I.: Overlapping non matching meshes domain decomposition method in isogeometric analysis. arXiv preprint arXiv:1502.03756 (2015)
  3. 3.
    Brivadis, E., Buffa, A., Wohlmuth, B., Wunderlich, L.: Isogeometric mortar methods. Comput. Methods Appl. Mech. Eng. 284, 292–319 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cotrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis, Toward Integration of CAD and FEA. Wiley, Sussex (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    Beirão da Veiga, L., Buffa, A., Sangalli, G., Vázquez, R.: Mathematical analysis of variational isogeometric methods. Acta Numer. 23, 157–287, 5 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    De-Boor, C.: A Practical Guide to Splines, vol. 27 of Applied Mathematical Science. Springer, New York, revised edition edition (2001)Google Scholar
  7. 7.
    Dryja, M.: On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients. Comput. Methods Appl. Math. 3(1), 76–85 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dryja, M., Galvis, J., Sarkis, M.: BDDC methods for discontinuous Galerkin discretization of elliptic problems. J. Complex. 23(4–6), 715–739 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dryja, M., Galvis, J., Sarkis, M.: A FETI-DP preconditioner for a composite finite element and discontinuous Galerkin method. SIAM J. Numer. Anal. 51(1), 400–422 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dryja, M., Sarkis, M.: 3-D FETI-DP preconditioners for composite finite element-discontinuous galerkin methods. In: Domain Decomposition Methods in Science and Engineering XXI, pp. 127–140. Springer, Berlin (2014)Google Scholar
  11. 11.
    Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements, vol. 159 of Applied Mathematical Sciences. Springer, New York (2004)Google Scholar
  12. 12.
    Falini, A., Špeh, J., Jüttler, B.: Planar domain parameterization with THB-splines. Comput. Aided Geom. Des. 35–36, 95–108 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hofer, C.: Parallelization of continuous and discontinuous Galerkin dual-primal isogeometric tearing and interconnecting methods. Comput. Math. Appl. 74(7), 1607–1625 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hofer, C.: Analysis of discontinuous Galerkin dual-primal isogeometric tearing and interconnecting methods. Math. Models Methods Appl. Sci. 28(1), 131–158 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hofer, C., Langer, U.: Dual-primal isogeometric tearing and interconnecting solvers for multipatch dG-IgA equations. Comput. Methods Appl. Mech. Eng. 316, 2–21 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hofer, C., Langer, U.: Dual-primal isogeometric tearing and interconnecting methods. In: Chetverushkin, B.N., Fitzgibbon, W., Kuznetsov, Y.A., Neittaanmäki, P., Pironneau, O., Periaux, J. (eds.) Contributions to Partial Differential Equations and Applications, vol. 47 of Computational Methods in Applied Sciences. Springer, Berlin (2019)Google Scholar
  17. 17.
    Hofer, C., Langer, U., Toulopoulos, I.: Discontinuous Galerkin Isogeometric Analysis of Elliptic Diffusion Problems on Segmentations with Gaps. SIAM J. Sci. Comput. (2016). Accepted ManuscriptGoogle Scholar
  18. 18.
    Hofer, C., Toulopoulos, I.: Discontinuous Galerkin isogeometric analysis of elliptic problems on segmentations with non-matching interfaces. Comput. Math. Appl. 72, 1811–1827 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hofer, C., Toulopoulos, I.: Discontinuous Galerkin isogeometric analysis for segmentations generating overlapping regions. under review, preprint available as arXiv:1803.09616 (2018)
  20. 20.
    Hoschek, J., Lasser, D.: Fundamentals of computet aided geometric design. A K Peters, Wellesley, Massachusetts (1993). Translated by L. SchumakerGoogle Scholar
  21. 21.
    Jüttler, B., Kapl, M., Nguyen, D.-M., Pan, Q., Pauley, M.: Isogeometric segmentation: the case of contractible solids without non-convex edges. Comput.-Aided Des. 57, 74–90 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Jüttler, B., Langer, U., Mantzaflaris, A., Moore, S.E., Zulehner, W.: Geometry + simulation modules: implementing isogeometric analysis. PAMM 14(1), 961–962 (2014)CrossRefGoogle Scholar
  23. 23.
    Kleiss, S., Pechstein, C., Jüttler, B., Tomar, S.: IETI-isogeometric tearing and interconnecting. Comput. Methods Appl. Mech. Eng. 247, 201–215 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Langer, U., Mantzaflaris, A., Moore, St.E., Toulopoulos, I.: Multipatch Discontinuous Galerkin Isogeometric Analysis, vol. 107 of Lecture Notes in Computational Science and Engineering, pp. 1–32. Springer, Heidelberg (2015)Google Scholar
  25. 25.
    Langer, U., Toulopoulos, I.: Analysis of multipatch discontinuous Galerkin IgA approximations to elliptic boundary value problems. Comput. Vis. Sci. 17(5), 217–233 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Mantzaflaris, A., Hofer, C. et al.: G+SMO (Geometry plus Simulation MOdules) v0.8.1. (2015)
  27. 27.
    Mantzaflaris, A., Scholz, F., Toulopoulos, I.: Low-rank space-time decoupled isogeometric analysis for parabolic problems with varying coefficients. Comput. Methods Appl. Math. (2018)Google Scholar
  28. 28.
    Nguyen, D.-M., Pauley, M., Jüttler, B.: Isogeometric segmentation. part II: on the segmentability of contractible solids with non-convex edges. Gr. Models 76, 426–439 (2014)CrossRefGoogle Scholar
  29. 29.
    Nguyen, D.-M., Pauley, M., Jüttler, B.: Isogeometric segmentation: construction of auxiliarly curves. Comput.-Aided Des. 70, 89–99 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Nguyen, V.P., Kerfriden, P., Brino, M., Bordas, S.P.A., Bonisoli, E.: Nitsche’s method for two and three dimensional NURBS patch coupling. Comput. Mech. 53(6), 1163–1182 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Pauley, M., Nguyen, D.-M., Mayer, D., Speh, J., Weeger, O., Jüttler, B.: The isogeometric segmentation pipeline. In Jüttler, B., Simeon, B. (eds) Isogeometric Analysis and Applications IGAA 2014, vol. 107 of Lecture Notes in Computer Science. Springer, Heidelberg (2015)Google Scholar
  32. 32.
    Pechstein, C.: Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems. Springer, Berlin (2013)CrossRefzbMATHGoogle Scholar
  33. 33.
    Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods (Mathématiques et Applications), vol. 69 of Mathématiques et Applications. Springer, Berlin (2010)Google Scholar
  34. 34.
    Riviere, B.: Discontinuous Galerkin methods for Solving Elliptic and Parabolic Equations. SIAM, Society for industrial and Applied Mathematics Philadelphia (2008)Google Scholar
  35. 35.
    Ruess, M., Schillinger, D., Özcan, A.I., Rank, E.: Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries. Comput. Methods Appl. Mech. Eng. 269, 46–71 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Schumaker, L.L.: Spline Functions: Basic Theory, 3rd edn. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  37. 37.
    Toselli, A., Widlund, O.B.: Domain Decomposition Methods-Algorithms and Theory. Springer, Berlin (2005)CrossRefzbMATHGoogle Scholar
  38. 38.
    Wriggers, P.: Nonlinear Finite Element Methods. Springer, Berlin (2008)zbMATHGoogle Scholar
  39. 39.
    Xu, G., Li, M., Mourrain, B., Rabczuk, T., Xu, J., Bordas, S .P.A.: Constructing iga-suitable planar parameterization from complex cad boundary by domain partition and global/local optimization. Comput. Methods Appl. Mech. Eng. 328(Supplement C), 175–200 (2018)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Xu, G., Mourrain, B., Duvigneau, R., Galligo, A.: Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications. Comput.-Aided Des. 45(2), 395–404 (2013)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Xu, G., Mourrain, B., Duvigneau, R., Galligo, A.: Constructing analysis-suitable parameterization of computational domain from cad boundary by variational harmonic method. J. Comput. Phys. 252(Supplement C), 275–289 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2019

Authors and Affiliations

  • Christoph Hofer
    • 1
  • Ulrich Langer
    • 1
    • 2
  • Ioannis Toulopoulos
    • 2
    • 3
    Email author
  1. 1.Johannes Kepler University (JKU)LinzAustria
  2. 2.Johann Radon Institute for Computational and Applied Mathematics (RICAM)Austrian Academy of SciencesLinzAustria
  3. 3.AC2T Research GmbH, Austrian Excellence Center for TribologyWiener NeustadtAustria

Personalised recommendations