Advertisement

Molecular descriptors of discrete dynamical system in fractal and Cayley tree type dendrimers

  • Muhammad Kamran SiddiquiEmail author
  • Muhammad Imran
  • Muhammad Azhar Iqbal
Original Research
  • 40 Downloads

Abstract

Graph theory plays an important role in modeling and designing any chemical network. A large number of properties like physico-chemical properties, thermodynamic properties, chemical activity and biological activity are determined by the chemical applications of graph theory. These properties can be characterized by certain graph invariants referred to as topological indices. A molecular descriptor (topological index) is a numerical representation of a chemical structure which correlates certain physico-chemical characteristics of underlying chemical compounds besides its numerical representation. Chemical graph theory plays an important role in modeling and designing any chemical network as well as in discrete dynamical systems. These properties can be characterized by certain graph invariants referred to as topological indices in discrete dynamical systems. In this paper, we discuss the fractal and Cayley tree type dendrimers and computed exact results for degree based molecular descriptor.

Keywords

Molecular descriptor Fractal and Cayley tree type dendrimers Zagreb type indices Augmented Zagreb index Balaban index Forgotten topological index 

Mathematics Subject Classification

05C12 05C90 

Notes

Acknowledgements

The authors are grateful to the anonymous referees for their valuable comments and suggestions that improved this paper. This research is supported by the Start-up Research Grant 2016 of United Arab Emirates University (UAEU), Al Ain, United Arab Emirates via Grant No. G00002233 and UPAR Grant of UAEU via Grant No. G00002590.

References

  1. 1.
    Idrees, N., Naeem, M.N., Hussain, F., Sadiq, A., Siddiqui, M.K.: Molecular descriptors of benzenoid system. Quim. Nova 40(2), 143–145 (2017)Google Scholar
  2. 2.
    Gao, W., Siddiqui, M.K.: Molecular descriptors of nanotube, oxide, silicate, and triangulene networks. J. Chem. 2017, 1–10 (2017)Google Scholar
  3. 3.
    Gao, W., Siddiqui, M.K., Naeem, M., Rehman, N.A.: Topological characterization of carbon graphite and crystal cubic carbon structures. Molecules 22(9), 1496–1507 (2017)CrossRefGoogle Scholar
  4. 4.
    Siddiqui, M.K., Imran, M., Ahmad, A.: On Zagreb indices, Zagreb polynomials of some nanostar dendrimers. Appl. Math. Comput. 280, 132–139 (2016)MathSciNetGoogle Scholar
  5. 5.
    Gutman, I., Das, K.C.: The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 50, 83–92 (2004)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Gutman, I., Trinajstć, N.: Graph theory and molecular orbitals. Total \(\pi \)-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17, 535–538 (1972)CrossRefGoogle Scholar
  7. 7.
    Doslic, T.: Vertex-weighted Wiener polynomials for composite graphs. Ars Math. Contemp. 1, 66–80 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gutman, I., Furtula, B., Vukićević, Z.K., Popivoda, G.: On Zagreb indices and coindices. MATCH Commun. Math. Comput. Chem. 74, 5–16 (2015)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Ghorbani, M., Azimi, N.: Note on multiple Zagreb indices. Iran. J. Math. Chem. 3(2), 137–143 (2012)zbMATHGoogle Scholar
  10. 10.
    Eliasi, M., Iranmanesh, A., Gutman, I.: Multiplicative version of first Zagreb index. MATCH Commun. Math. Comput. Chem. 68, 217–230 (2012)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Furtula, B., Gutman, I.: A forgotten topological index. J. Math. Chem. 53(4), 1184–1190 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Sun, Y.C., Lin, Z., Peng, W.X., Yuan, T.Q., Xu, F., Wu, Y.Q., Yang, J., Wang, Y.S., Sun, R.C.: Chemical changes of raw materials and manufactured binderless boards during hot pressing: lignin isolation and characterization. Bioresources 9(1), 1055–1071 (2014)Google Scholar
  13. 13.
    Gao, W., Siddiqui, M.K., Imran, M., Jamil, M.K., Farahani, M.R.: Forgotten topological index of chemical structure in drugs. Saudi Pharm. J. 24, 258–267 (2016)CrossRefGoogle Scholar
  14. 14.
    Balaban, A.T.: Highly discriminating distance-based topological index. Chem. Phys. Lett. 89, 399–404 (1982)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Balaban, A.T., Quintas, L.V.: The smallest graphs, trees, and \(4\)-trees with degenerate topological index. J. Math. Chem. 14, 213–233 (1983)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Ranjini, P.S., Lokesha, V., Usha, A.: Relation between phenylene and hexagonal squeez using harmonic index. Int. J. Graph Theory 1, 116–121 (2013)Google Scholar
  17. 17.
    Basavanagoud, B., Gao, W., Patil, S., Desai, V.R., Mirajkar, K.G., Pooja, B.: Computing first Zagreb index and F-index of new C-products of graphs. Appl. Math. Nonlinear Sci. 2(1), 285–298 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Basavanagoud, B., Desai, V.R., Patil, S.: \((\beta,\alpha )\)connectivity index of graphs. Appl. Math. Nonlinear Sci. 2(1), 21–30 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ramane, H.S., Jummannaver, R.B.: Note on forgotten topological index of chemical structure in drugs. Appl. Math. Nonlinear Sci. 1(2), 369–374 (2016)CrossRefGoogle Scholar
  20. 20.
    Siddiqui, M.K., Naeem, M., Rahman, N.A., Imran, M.: Computing topological indicesof certain networks. J. Optoelectron. Adv. Mater. 18, 884–892 (2016)Google Scholar
  21. 21.
    Imran, M., Ali, M.A., Ahmad, S., Siddiqui, M.K., Baig, A.Q.: Topological characterization of the symmetrical structure of bismuth tri-iodide. Symmetry 10(6), 201 (2018)CrossRefGoogle Scholar
  22. 22.
    Jamil, M.K., Farahani, M.R., Imran, M., Malik, M.A.: Computing eccentric version of second Zagreb index of polycyclic aromatic hydrocarbons \(PAH_{k}\). Appl. Math. Nonlinear Sci. 1(1), 247–252 (2016)CrossRefGoogle Scholar
  23. 23.
    Perc, M., Gomez-Gardenes, J., Szolnoki, A., Floria, L.M., Moreno, Y.: Populations: a review: evolutionary dynamics of group interactions on structured. J. R. Soc. Interface 10, 201–209 (2013)CrossRefGoogle Scholar
  24. 24.
    Perc, M., Szolnoki, A.: Coevolutionary games: a mini review. BioSystems 99, 109–125 (2010)CrossRefGoogle Scholar
  25. 25.
    Rajan, B., William, A., Grigorious, C., Stephen, S.: On certain topological indices of silicate, honeycomb and hexagonal networks. J. Comput. Math. Sci. 5, 530–535 (2012)Google Scholar
  26. 26.
    Hayat, S., Malik, M.A., Imran, M.: Computing topological indices of honeycomb derived networks. Romanian J. Inf. Sci. Technol. 18(2), 144–165 (2015)Google Scholar
  27. 27.
    Furtula, B., Graovac, A., Vukicevic, D.: Augmented Zagreb index. J. Math. Chem. 48, 370–380 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Imran, M., Baig, A.Q., Khalid, W.: On topological indices of fractal and Cayley tree type dendrimers. Discrete Dyn. Nat. Soc. (in press) Google Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2019

Authors and Affiliations

  1. 1.Department of MathematicsCOMSATS University IslamabadSahiwalPakistan
  2. 2.Department of Mathematical SciencesUnited Arab Emirates UniversityAl AinUnited Arab Emirates
  3. 3.Department of Mathematics, School of Natural Sciences (SNS)National University of Sciences and Technology (NUST)IslamabadPakistan
  4. 4.Department of Basic SciencesRiphah International University IslamabadIslamabadPakistan

Personalised recommendations