Chelyshkov collocation approach for solving linear weakly singular Volterra integral equations

  • Y. TalaeiEmail author
Original Research


The purpose of this paper is to present a new numerical algorithm for solving the weakly singular Volterra integral equations. The operational matrix of fractional integral based on fractional-order Chelyshkov polynomials is constructed and together with the collocation method is used to reduce the integral equation into a system of algebraic equations. The convergence of the method is discussed in \(L^{2}\)-norm and finally, some numerical examples are shown to illustrate the accuracy of the proposed method.


Weakly singular Volterra integral equation Spectral collocation method Fractional-order Chelyshkov polynomials Convergence analysis 

Mathematics Subject Classification

45G05 65M70 33C45 


  1. 1.
    Jerri, A.J.: Introduction to Integral Equations with Applications. Wiley, London (1999)zbMATHGoogle Scholar
  2. 2.
    Willis, J.R., Nemat-Nasse, S.: Singular pertubation solution of a class of singular integral equations. Q. Appl. Math. XLVIII(4), 741–753 (1990)zbMATHGoogle Scholar
  3. 3.
    Gorenflo, R., Vessella, S.: Abel Integral Equations: Analysis and Applications. Springer, Berlin (1991)zbMATHGoogle Scholar
  4. 4.
    Karimi Vanani, S., Soleymani, F.: Tau approximate solution of weakly singular Volterra integral equations. Math. Comput. 57, 494–502 (2013)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Li, X., Tang, T.: Convergence analysis of Jacobi spectra collocation methods for Abel-Volterra integral equations of second kind. Front. Math. China 7, 69–84 (2012)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chen, Y., Tang, T.: Convergence analysis of the Jacobi spectal-collocation methods for Volterra integral equations with a weakly singular kernel. Math. Comput. 79, 147–167 (2010)zbMATHGoogle Scholar
  7. 7.
    Chen, Y., Tang, T.: Spectral methods for weakly singular Volterra integral equations with smooth solutions. Comput. Appl. Math 233, 938–950 (2009)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, New York (2006)zbMATHGoogle Scholar
  9. 9.
    Gheorghiu, C.I.: In: Popoviciu, T. (ed.) Spectral Methods for Differential Problems, Institute of Numerical Analysis, Cluj-Napoca (2007)Google Scholar
  10. 10.
    Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia (1997)zbMATHGoogle Scholar
  11. 11.
    Coutsias, E.A., Hagstrom, T., Torres, D.: An efficient spectral method for ordinary differential equations with rational function. Math. Comput. 65, 611635 (1996)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Doha, E.H.: On the coefficients of integrated expansions and integrals of ultraspherical polynomials and their applications for solving differential equations. J. Comput. Appl. Math. 139, 275–298 (2002)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Doha, E.H., Abd-Elhameed, W.M.: Accurate spectral solutions for the parabolic and elliptic partial differential equations by the ultraspherical tau method. J. Comput. Appl. Math. 181, 24–45 (2005)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions. Applied Mathematical Series, vol. 55. National Bureau of Standards, New York (1970)Google Scholar
  15. 15.
    Chelyshkov, V.S.: Alternative orthogonal polynomials and quadratures. Electron. Trans. Numer. Anal. 25, 17–26 (2006)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Ahmadi Shali, J., Darania, P., Akbarfam, A.A.: Collocation method for nonlinear Volterra–Fredholm integral equations. J. Appl. Sci. 2, 115–121 (2012)Google Scholar
  17. 17.
    Rasty, M., Hadizadeh, M.: A Product integration approach on new orthogonal polynomials for nonlinear weakly singular integral equations. Acta Appl. Math. 109, 861–873 (2010)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Soori, Z., Aminataei, A.: The spectral method for solving Sine-Gordon equation using a new orthogonal polynomial. ISRN Appl. Math. 2012, 462731 (2012). MathSciNetzbMATHGoogle Scholar
  19. 19.
    Oguza, C., Sezer, M.: Chelyshkov collocation method for a class of mixed functional integro-differential equations. Appl. Math. comput. 259, 943–954 (2015)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Bazm, S., Hosseini, A.: Numerical solution of nonlinear integral equations using alternative Legendre polynomials. J. Appl. Math. Comput. 56(1), 25–51 (2016)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Saffar Ardabili, J., Talaei, Y.: Chelyshkov collocation method for solving the two-dimensional Fredholm–Volterra integral equations. Int. J. Appl. Comput. Math. 4(1), 1–13 (2018)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Talaei, Y., Asgari, M.: An operational matrix based on Chelyshkov polynomials for solving multi-order fractional differential equations. Neural. Comput. Appl. 28, 1–8 (2017)Google Scholar
  23. 23.
    Mohammadi, F., Mohyud-Din, S.T.: A fractional-order Legendre collocation method for solving the Bagley-Torvik equations. Adv. Differ. Equ. 2016(1), 269 (2016)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Mokhtary, P., Ghoreishi, F., Srivastava, H.M.: The Muntz-Legendre tau method for fractional differential equations. Appl. Math. Model. 40(2), 671–684 (2016)MathSciNetGoogle Scholar
  25. 25.
    Rahimkhani, P., Ordokhani, Y., Babolian, E.: Fractional-order Bernoulli wavelets and their applications. Appl. Math. Model. 40(17), 8087–8107 (2016)MathSciNetGoogle Scholar
  26. 26.
    Yuzbasi, S.: Numerical solutions of fractional Riccati type differential equations by means of the Bernstein polynomials. Comput. Appl. Math. 219, 6328–6343 (2013)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Esmaeili, Sh, Shamsi, M., Luchko, Y.: Numerical solution of fractional differential equations with a collocation method based on Muntz polynomials. Comput. Math. Appl. 62, 918–929 (2011)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Kazem, S., Abbasbandy, S., Kumar, S.: Fractional-order Legendre functions for solving fractional-order differential equations. Appl. Math. Model. 37(7), 5498–5510 (2013)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Diethelm, K.: The Analysis of Fractional Differential Equations. Lectures Notes in Mathematics. Springer, Berlin (2010)Google Scholar
  30. 30.
    Atkinson, K.E., Han, W.: Theoretical Numerical Analysis, 2nd edn. Springer, Berlin (2005)zbMATHGoogle Scholar
  31. 31.
    Pourgholi, R., Tahmasebi, A., Azimi, R.: Tau approximate solution of weakly singular Volterra integral equations with Legendre wavelet basis. Int. J. Comput. Math. 94(7), 1337–1348 (2016)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Eshaghi, J., Adibi, H., Kazem, S.: Solution of nonlinear weakly singular Volterra integral equations using the fractional-order Legendre functions and pseudospectral method. Math. Methods. Appl. Sci. 39, 3411–3425 (2016)MathSciNetzbMATHGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2018

Authors and Affiliations

  1. 1.Young Researchers and Elite Club, Ardabil BranchIslamic Azad UniversityArdabilIran

Personalised recommendations