Advertisement

Global dynamics of stochastic predator–prey model with mutual interference and prey defense

  • Ranjit Kumar UpadhyayEmail author
  • Rana D. Parshad
  • Kwadwo Antwi-Fordjour
  • Emmanuel Quansah
  • Sarita Kumari
Original Research
  • 107 Downloads

Abstract

Predator–prey interactions with stochastic forcing have been extensively investigated in the literature. However there are not many investigations of such models, that include prey defense. The goal of the current manuscript is to investigate a stochastic predator–prey model with mutual interference, and various Holling type functional responses, where the prey is able to release toxins as defense against a predator. This can also be generalized to include group or herd defense, toxin production and mimicry. We establish local and global existence for the stochastic model, and perform various numerical simulations to support our theoretical results. Our key result is that we have globally existing solutions independent of the magnitude of the toxin release parameter, or the predation rates. We also show that large enough noise intensity in solely the prey, can lead to extinction in the noisy model, for both species, whilst there is persistence in the deterministic model.

Keywords

Stochastic predator–prey model Global existence Extinction Multiplicative noise Millstein scheme 

Mathematics Subject Classification

Primary 60H10 65C30 Secondary 92D25 92D40 

Notes

Acknowledgements

RP would like to acknowledge valuable support from the National Science Foundation via DMS-1715377.

References

  1. 1.
    Hassell, M.: Mutual interference between searching insect parasites. J. Anim. Ecol. 40, 473–486 (1971)CrossRefGoogle Scholar
  2. 2.
    Hassell, M.: Density dependence in single species population. J. Anim. Ecol. 44, 283–295 (1975)CrossRefGoogle Scholar
  3. 3.
    Allaby, M.: A dictionary of Ecology. Oxford University Press, Oxford (2010)Google Scholar
  4. 4.
    Wang, K.: Existence and global asymptotic stability of positive periodic solution for a predator prey system with mutual interference. Nonlinear Anal Real World Appl. 10, 2774–2783 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Wang, K.: Permanence and global asymptotical stability of a predator prey model with mutual interference. Nonlinear Anal Real World Appl. 12, 1062–1071 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Wang, K., Zhu, Y.L.: Global attractivity of positive periodic solution for a Volterra model. Appl. Math. Comput. 203, 493–501 (2008)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Wang, K., Zu, Y.: Permanence and global attractivity of a delayed predator–prey model with mutual interference. Int. J. Math. Comput. Phys. Quant. Eng. 7(3), 243–249 (2013)Google Scholar
  8. 8.
    Wang, K., Zhu, Y.: Periodic solutions, permanence and global attractivity of a delayed impulsive prey–predator system with mutual interference. Nonlinear Anal. Real World Appl. 14(2), 1044–1054 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, L.J.: Permanence of a discrete periodic Volterra model with mutual interference. Discrete Dyn. Nat. Soc. (2009).  https://doi.org/10.1155/2009/205481 MathSciNetzbMATHGoogle Scholar
  10. 10.
    Lin, X., Chen, F.D.: Almost periodic solution for a Volterra model with mutual interference and Beddington–DeAngelis functional response. Appl. Math. Comput. 214, 548–556 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Wang, X.L., Du, Z.J., Liang, J.: Existence and global attractivity of positive periodic solution to a Lotka-Volterra model. Nonlinear Anal. Real World Appl. (2010).  https://doi.org/10.1016/j.nonrwa.2010.03.011 MathSciNetzbMATHGoogle Scholar
  12. 12.
    May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (2001)zbMATHGoogle Scholar
  13. 13.
    Upadhyay, R.K., Mukhopadhyay, A., Iyengar, S.R.K.: Influence of environmental noise on the dynamics of a realistic ecological model. Fluct. Noise Lett. 7(01), 61–77 (2007)CrossRefGoogle Scholar
  14. 14.
    Liu, M., Wang, K.: Persistence and extinction of a stochastic single-species model under regime switching in a polluted environment. J. Theor. Biol. 264, 934–944 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Liu, M., Wang, K.: Population dynamical behavior of Lotka Volterra cooperative systems with random perturbations. Discrete Contin. Dyn. Syst. 33, 2495–2522 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Liu, M., Wang, K.: Dynamics of a two-prey one-predator system in random environments. J. Nonlinear Sci. 23(751), 775 (2013)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Rudnicki, R.: Long-time behaviour of a stochastic prey predator model. Stoch. Process. Appl. 108, 93–107 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ji, C., Jiang, D., Shi, N.: Analysis of a predator–prey model with modified Leslie Gower and Holling type II schemes with stochastic perturabation. J. Math. Anal. Appl. 359(2), 482–490 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Upadhyay, R.K., Agrawal, R.: Modeling the effect of mutual interference in a delay-induced predator–prey system. J. Appl. Math. Comput. 49, 13–39 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Du, B.: Existence, extinction and global asymptotical stability of a stochastic predator–prey model with mutual interference. J. Appl. Math. Comput. 46, 79–91 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, vol. 113. Springer, berlin (1988)CrossRefzbMATHGoogle Scholar
  22. 22.
    Xia, P.Y., Zheng, X.K., Jiang D.Q.: Persistence and non-persistence of a nonautonomous stochastic mutualism system. In: Abstract and Applied Analysis, vol. 2013, Article ID256249, 13 pp (2013)Google Scholar
  23. 23.
    Oksendal, B.: Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin (2003)CrossRefzbMATHGoogle Scholar
  24. 24.
    Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, New York (1992)CrossRefzbMATHGoogle Scholar
  25. 25.
    Box, G.E., Muller, M.E.: A note on the generation of random normal deviates. Ann. Math. Stat. 29(2), 610–611 (1958)CrossRefzbMATHGoogle Scholar
  26. 26.
    Ji, C., Jiang, D., Shi, N.: Analysis of a predator–prey model with modified Leslie-Gower and Holling type II schemes with stochastic perturbation. J. Math. Anal. Appl. 359, 482–498 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Thakur, N.K., Tiwari, S.K., Dubey, B., Upadhyay, R.K.: Diffusive three species plankton model in the presence of toxic prey: application to Sundarban mangrove wetland. J. Biol. Syst. 25(02), 185–206 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Dubey, B., Hussain, J., Raw, S.N., Upadhyay, R.K.: Modeling the effect of pollution on biological species: a socio-ecological problem. Comput. Ecol. Softw. 5(2), 152–174 (2015)Google Scholar
  29. 29.
    Parshad, R., Quansah, E., Black, K., Beauregard, M.: Biological control via ecological damping: an approach that attenuates non-target effects. Math. Biosci. 273, 23–44 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Du, B., Hu, M., Lian, X.: Dynamical behavior for a stochastics predator–prey model with HV type functional response. Bull. Malays. Math. Sci. Soc. 40, 486–503 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Krivan, V.: Optimal foraging and predatorprey dynamics. Theor. Popul. Biol. 49(3), 265–290 (1996)CrossRefzbMATHGoogle Scholar
  32. 32.
    Du, B.: Stability analysis of periodic solution for a complex valued neural networks with bounded and unbounded delays. Asian J. Control 20(2), 881–892 (2018)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2018

Authors and Affiliations

  • Ranjit Kumar Upadhyay
    • 1
    Email author
  • Rana D. Parshad
    • 2
  • Kwadwo Antwi-Fordjour
    • 3
  • Emmanuel Quansah
    • 4
  • Sarita Kumari
    • 1
  1. 1.Department of Applied MathematicsIndian Institute of Technology (Indian School of Mines)DhanbadIndia
  2. 2.Department of MathematicsIowa State UniversityAmesUSA
  3. 3.Department of Mathematics and Computer ScienceSamford UniversityBirminghamUSA
  4. 4.PacificSource Health PlansSpringfieldUSA

Personalised recommendations