Advertisement

An intuitionistic fuzzy information measure of order-\((\alpha , \beta )\) with a new approach in supplier selection problems using an extended VIKOR method

  • Rajesh JoshiEmail author
  • Satish Kumar
Original Research

Abstract

In this communication, a new two parametric fuzzy information measure of order-\((\alpha , \beta )\) is proposed in the settings of intuitionistic fuzzy set theory. Besides the validation of proposed measure, some of its major properties are also studied. Attributes weights play an important role in the solution of a MADM problem. Two methods of determining the attributes weights are discussed. Considering the importance of subjective and objective weights, a new multiple attribute decision-making (MADM) method based on the concept of VIsekriterijumska optimizacija i KOmpromisno Resenje (VIKOR) is introduced. The proposed MADM method is suitably explained with the help of two illustrative examples.

Keywords

IF entropy of order-\( (\alpha , \beta ) \) Intuitionistic fuzzy entropy Multi-attribute decision making (MADM) VIKOR 

Mathematics Subject Classification

94A15 94A24 26D15 

Notes

Acknowledgements

The authors are thankful to anonymous reviewers for their precious suggestions to improve this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

  1. 1.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)CrossRefzbMATHGoogle Scholar
  2. 2.
    Aczel, J., Daroczy, Z.: On Measures of Information and Their Characterization. Academic Press, New York (1975)zbMATHGoogle Scholar
  3. 3.
    Burillo, P., Bustince, H.: Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets Syst. 118, 305–316 (2001)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bhandari, D., Pal, N.R.: Some new information measures for fuzzy sets. Inf. Sci. 67, 209–228 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boran, F.E., Genc, S., Akay, D.: Personnel selection based on intuitionistic fuzzy sets. Hum. Factors Ergon. Manuf. Serv. Ind. 21, 493–503 (2011)CrossRefGoogle Scholar
  6. 6.
    Chen, T., Li, C.: Determining objective weights with intuitionistic fuzzy entropy measures: a comparative analysis. Inf. Sci. 180, 4207–4222 (2010)CrossRefGoogle Scholar
  7. 7.
    Chu, A.T.W., Kalaba, R.E., Spingarn, K.: A comparison of two methods for determining the weights of belonging to fuzzy sets. J. Optim. Theor. Appl. 27, 531–538 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Choo, E.U., Wedley, W.C.: Optimal criterian weights in repetitive multicriteria decision making. J. Oper. Res. Soc. 36, 983–992 (1985)CrossRefzbMATHGoogle Scholar
  9. 9.
    De Luca, A., Termini, S.: A definition of non-probabilistic entropy in the setting of fuzzy set theory. Inf. Control 20, 301–312 (1972)CrossRefzbMATHGoogle Scholar
  10. 10.
    Feng, Z.Q., Liu, C.G.: On similarity based approximate reasoning in interval-valued fuzzy environments. Informatica 36, 255–262 (2012)MathSciNetGoogle Scholar
  11. 11.
    Fan, Z.P.: Complicated multiple attribute decision making: theory and applications. Ph.D. Dissertation, Northeastern university, Shenyang (1996)Google Scholar
  12. 12.
    Hung, W.L., Yang, M.S.: Fuzzy entropy on intuitionistic fuzzy sets. Int. J. Intell. Syst. 21(4), 443–451 (2006)CrossRefzbMATHGoogle Scholar
  13. 13.
    Hwang, C.L., Lin, M.J.: Group Decision Making Under Multiple Criteria: Methods and Applications. Springer, Berlin (1987)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hung, W.L.: A note on entropy of intuitionistic fuzzy sets. Int. J. Uncertain. Fuzziness Knowl. Syst. 11(5), 627–633 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hafezalkotob, A., Hafezalkotob, A.: Interval target-based VIKOR method supported on interval distance and preference degree for machine selection. Eng. Appl. Artif. Intell. 57, 184–196 (2017)CrossRefzbMATHGoogle Scholar
  16. 16.
    Huang, J., Li, Z.S., Liu, H.-C.: New approach for failure mode and effect analysis using linguistic distribution assessments and TODIM method. Reliab. Eng. Syst. Saf. 167(C), 302–309 (2017)CrossRefGoogle Scholar
  17. 17.
    Haldar, A., Ray, A., Benerjee, D., Ghosh, S.: Resilient supplier selection under a fuzzy environment. Int. J. Manag. Sci. Eng. Manag. 9, 147–156 (2014)Google Scholar
  18. 18.
    Joshi, R., Kumar, S.: A new approach in multiple attribute decision making using \(R\)-norm entropy and Hamming distance measure. Int. J. Inf. Manag. Sci. 27(3), 253–268 (2016)Google Scholar
  19. 19.
    Joshi, R., Kumar, S.: Parametric \((R, S)\)-norm entropy on intuitionistic fuzzy sets with a new approach in multiple attribute decision making. Fuzzy Inf. Eng. 9, 181–203 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Joshi, R., Kumar, S.: An \((R, S)\)-norm fuzzy information measure with its applications in multiple attribute decision making. Comput. Appl. Math. (2017).  https://doi.org/10.1007/s40314-017-0491-4 zbMATHGoogle Scholar
  21. 21.
    Joshi, R., Kumar, S.: A new exponential fuzzy entropy of order \((\alpha, \beta )\) and its application in multiple attribute decision making. Commun. Math. Stat. 5, 213–229 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Li, H.-C., You, J.-X., You, X.-Y., Shan, M.-M.: A novel approach for failure mode and effects analysis using combination weighting and fuzzy VIKOR method. Appl. Soft Comput. 28, 579–588 (2015)CrossRefGoogle Scholar
  23. 23.
    Opricovic, S.: Multi-criteria optimization of civil engineering systems. Ph.D. Thesis, University of Belgrade, Belgrade (1998)Google Scholar
  24. 24.
    Renyi, A.: On measures of entropy and information. In: Proceedigs of 4th Barkley Symposium on Mathematical Statistics and Probability, vol. 1, p. 547. University of California Press (1961)Google Scholar
  25. 25.
    Szmidt, E., Kacprzyk, J.: Using intuitionistic fuzzy sets in group decision-making. Control Cybern. 31, 1037–1054 (2002)zbMATHGoogle Scholar
  26. 26.
    Stanujkic, D.: Extension of ARAS method for decision making problems with interval-valued triangular fuzzy numbers. Informatica 26(2), 335–355 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Saaty, T.L.: The Analytical Hierarchy Process. McGraw-Hill, New York (1980)zbMATHGoogle Scholar
  28. 28.
    Sahu, A.K., Datta, S., Mahapatra, S.S.: Evaluation and selection of resilient suppliers in fuzzy environment: exploration of fuzzy-VIKOR. Benchmarking 23, 651–673 (2016)CrossRefGoogle Scholar
  29. 29.
    Sambuc, R.: Function \(\phi \)-Flous, Application al’aide au Diagnostic en Pathologie Thyroidienne. These de Doctoraten Medicine, University of Marseille (1975)Google Scholar
  30. 30.
    Vlachos, I.K., Sergiadis, G.D.: Intuitionistic fuzzy information—applications to pattern recognition. Pattern Recognit. Lett. 28, 197–206 (2007)CrossRefGoogle Scholar
  31. 31.
    Verma, R.K., Sharma, B.D.: On intuitionistic fuzzy entropy of order-\(\alpha \). Adv. Fuzzy Syst. Article ID 789890, 8 pages (2014)Google Scholar
  32. 32.
    Wang, J., Wang, P.: Intuitionistic linguistic fuzzy multi-criteria decision-making method based on intuitionistic fuzzy entropy. Control Decis. 27, 1694–1698 (2012)MathSciNetGoogle Scholar
  33. 33.
    Wang, W., Xin, X.: Distance measure between intuitionistic fuzzy sets. Pattern Recognit. Lett. 26, 2063–2069 (2005)CrossRefGoogle Scholar
  34. 34.
    Wang, K.-Q., Liu, H.-C., Liu, L., Huang, J.: Green supplier evaluation and selection using cloud model theory and the QUALIFLEX method. Sustainability (2017).  https://doi.org/10.3390/su9050688 Google Scholar
  35. 35.
    Xu, Z.S., Yager, R.R.: Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 35, 417–433 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Xia, M., Xu, Z.S.: Entropy/cross entropy-based group decision making under intuitionistic fuzzy environment. Inf. Fusion 13, 31–47 (2012)CrossRefGoogle Scholar
  37. 37.
    Xu, Z.S.: Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 15, 1179–1187 (2007)CrossRefGoogle Scholar
  38. 38.
    Xu, F., Liu, J., Lin, S., Yuan, J.: A VIKOR-based approach for assessing the service performance of electric vehicle sharing programs: a case study in Beijing. J. Clean. Prod. 148, 254–267 (2017)CrossRefGoogle Scholar
  39. 39.
    Xu, Z.S., Cai, X.Q.: Intuitionistic Fuzzy Information Aggregation: Theory and Applications. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  40. 40.
    Xu, Z.S., Hu, H.: Projection models for intuitionistic fuzzy multiple attribute decision making. Int. J. Inf. Technol. Decis. Mak. 9, 267–280 (2010)CrossRefzbMATHGoogle Scholar
  41. 41.
    Yager, R.: Fuzzy medeling for intelligent decision making under uncertainty. IEEE Trans. Syst. Man Cybern. Part B Cybern. 30(1), 60–70 (2000)CrossRefGoogle Scholar
  42. 42.
    You, X.-Y., You, J.-X., Liu, H.-C., Zhen, L.: Group multi-criteria supplier selection using an extended VIKOR method with interval 2-tuple linguistic information. Experts Syst. Appl. 42, 1906–1916 (2015)CrossRefGoogle Scholar
  43. 43.
    Zadeh, L.A.: Fuzzy sets. Inf. Comput. 8, 338–353 (1965)zbMATHGoogle Scholar
  44. 44.
    Zadeh, L.A.: Probability measures of fuzzy events. J. Math. Anal. Appl. 23, 421–427 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Zhang, H., Zhang, W., Mei, C.: Entropy of interval-valued fuzzy sets based on distance and its relationship with similarity measure. Knowl. Based Syst. 22(6), 449–454 (2009)CrossRefGoogle Scholar
  46. 46.
    Zadeh, L.: Is there any need of fuzzy logic? Inf. Sci. 178(13), 2751–2779 (2008)CrossRefzbMATHGoogle Scholar
  47. 47.
    Zadeh, L.A.: The concept of linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8, 199–249 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Zhao, H., You, J.-X., Liu, H.-C.: Failure mode and effect analysis using MULTIMOORA method with continuous weighted entropy under interval-valued intuitionistic fuzzy environment. Soft Comput. 21(18), 5355–5367 (2017)CrossRefGoogle Scholar
  49. 49.
    Zhao, J., You, X.-Y., Liu, H.-C., Wu, S.-M.: An extended VIKOR method using intuitionistic fuzzy sets and combination weights for supplier selection. Symmetry (2017).  https://doi.org/10.3390/sym9090169 Google Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2018

Authors and Affiliations

  1. 1.Department of MathematicsMaharishi Markandeshwar UniversityMullana-AmbalaIndia

Personalised recommendations