Advertisement

Journal of Applied Mathematics and Computing

, Volume 59, Issue 1–2, pp 597–630 | Cite as

Rankings and operations for interval type-2 fuzzy numbers: a review and some new methods

  • Moslem Javanmard
  • Hassan Mishmast NehiEmail author
Original Research

Abstract

Interval type-2 fuzzy numbers (IT2FNs) are a particular kind of type-2 fuzzy numbers (T2FNs). In most scientific works, since arithmetic operations required IT2FNs are simpler than those of T2FNs, mathematical calculations on IT2FNs are used more frequently rather than the T2FNs. Hence, in recent decades, the study on IT2FNs have been intensified significantly. These numbers can be explained by trapezoidal and triangular forms. In this article, first, the concept of general interval type-2 trapezoidal fuzzy numbers (GIT2TrFNs) and then arithmetic operations among them are introduced. Next, three new ranking methods are suggested for GIT2TrFN. Finally, several examples are used to illustrate and compare new ranking methods with others.

Keywords

Fuzzy number (FN) General interval type-2 trapezoidal fuzzy number (GIT2TrFN) General interval type-2 triangular fuzzy number (GIT2TFN) General type-1 trapezoidal fuzzy number (GT1TrFN) General type-1 triangular fuzzy number (GT1TFN) Interval type-2 fuzzy number (IT2FN) Membership function (MF) Type-2 fuzzy number (T2FN) 

Mathematics Subject Classification

90C70 94D05 

References

  1. 1.
    Abbasbandy, S., Asady, B.: Ranking of fuzzy numbers by sign distance. Inf. Sci. 176(16), 2405–2416 (2006)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Aminifar, S., Marzuki, A.: Uncertainty in interval type-2 fuzzy systems. Math. Probl. Eng. 2013(452780), 16 (2013)zbMATHGoogle Scholar
  3. 3.
    Bortolan, G., Degani, R.: A review of some methods for ranking fuzzy subsets. Fuzzy Sets Syst. 15(1), 1–19 (1985)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Chen, S.H.: Ranking fuzzy numbers with maximizing set and minimizing set. Fuzzy Sets Syst. 17(2), 113–129 (1985)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chen, S.H., Hsieh, C.H.: Graded mean integration representation of generalized fuzzy number. J. Chin. Fuzzy Syst. 5(2), 1–7 (1999)Google Scholar
  6. 6.
    Chen, S.M., Hsiao, W.H., Jong, W.T.: Bidirectional approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst. 91(3), 339–353 (1997)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Chen, S.M., Hsiao, W.H.: Bidirectional approximate reasoning for rule-based systems using interval-valued fuzzy sets. Fuzzy Sets Syst. 113(2), 185–203 (2000)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Chen, S.M., Lee, L.W.: Fuzzy multiple criteria hierarchical group decision-making based on interval type-2 fuzzy sets. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 40(5), 1120–1128 (2010)Google Scholar
  9. 9.
    Chen, S.M., Lee, L.W.: Fuzzy multiple attributes group decision-making based on the ranking values and the arithmetic operations of interval type-2 fuzzy sets. Expert Syst. Appl. 37, 824–833 (2010)Google Scholar
  10. 10.
    Chen, S.M., Lee, L.W.: Fuzzy multiple attributes group decision-making based on the interval type-2 TOPSIS method. Expert Syst. Appl. 37, 2790–2798 (2010)Google Scholar
  11. 11.
    Chen, S.M., Yang, M.W., Lee, L.W., Yang, S.W.: Fuzzy multiple attributes group decision-making based on ranking interval type-2 fuzzy sets. Expert Syst. Appl. 39(5), 5295–5308 (2012)Google Scholar
  12. 12.
    Chen, S.M., Chen, J.H.: Fuzzy risk analysis based on ranking generalized fuzzy numbers with different heights and different spreads. Expert Syst. Appl. 36(3), 6833–6842 (2009)Google Scholar
  13. 13.
    Chen, S.M., Chen, S.J.: Fuzzy risk analysis based on the ranking of generalized trapezoidal fuzzy numbers. Appl. Intell. 26(1), 1–11 (2007)Google Scholar
  14. 14.
    Chen, S.M., Sanguansat, K.: Analyzing fuzzy risk based on a new fuzzy ranking method between generalized fuzzy numbers. Expert Syst. Appl. 38(3), 2163–2171 (2011)Google Scholar
  15. 15.
    Chen, S.M., Lee, L.W.: Fuzzy decision-making based on likelihood-based comparison relations. IEEE Trans. Fuzzy Syst. 18(3), 613–628 (2010)Google Scholar
  16. 16.
    Chen, S.M., Kao, P.Y.: TAIEX forecasting based on fuzzy time series, particle swarm optimization techniques and support vector machines. Inf. Sci. 247, 62–71 (2013)MathSciNetGoogle Scholar
  17. 17.
    Chen, S.M., Hong, J.A.: Multicriteria linguistic decision making based on hesitant fuzzy linguistic term sets and the aggregation of fuzzy sets. Inf. Sci. 286, 63–74 (2014)Google Scholar
  18. 18.
    Chen, S.M.: A fuzzy reasoning approach for rule-based systems based on fuzzy logics. IEEE Trans. Syst. Man Cybern. B Cybern. 26(5), 769–778 (1996)Google Scholar
  19. 19.
    Chen, S.M., Lin, T.E., Lee, L.W.: Group decision making using incomplete fuzzy preference relations based on the additive consistency and the order consistency. Inf. Sci. 259, 1–15 (2014)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Chen, S.M., Chen, S.J.: A new method to measure the similarity between fuzzy numbers. In: Proceedings of the 10th International Conference on Fuzzy Systems, Melbourne, Australia, vol. 3, pp. 1123–1126 (2001)Google Scholar
  21. 21.
    Chen, S.M., Chen, C.D.: Handling forecasting problems based on high-order fuzzy logical relationships. Expert Syst. Appl. 38(4), 3857–3864 (2011)Google Scholar
  22. 22.
    Chen, S.M., Wang, N.Y., Pan, J.S.: Forecasting enrollments using automatic clustering techniques and fuzzy logical relationships. Expert Syst. Appl. 36(8), 11070–11076 (2009)Google Scholar
  23. 23.
    Chen, S.M., Lee, S.H., Lee, C.H.: A new method for generating fuzzy rules from numerical data for handling classification problems. Appl. Artif. Intell. 15(7), 645–664 (2001)Google Scholar
  24. 24.
    Chen, S.M., Chung, N.Y.: Forecasting enrollments of students using fuzzy time series and genetic algorithms. Int. J. Inf. Manag. Sci. 17(3), 1–17 (2006)zbMATHGoogle Scholar
  25. 25.
    Cheng, C.H.: A new approach for ranking fuzzy numbers by distance method. Fuzzy Sets Syst. 95(3), 307–317 (1998)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Chu, T.C., Tsao, C.T.: Ranking fuzzy numbers with an area between the centroid point and original point. Comput. Math. Appl. 43(1), 111–117 (2002)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic, New York (1980)zbMATHGoogle Scholar
  28. 28.
    Dubois, D., Prade, H.: The mean value of a fuzzy number. Fuzzy Sets Syst. 24(3), 279–300 (1987)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Dubois, D., Prade, H.: Ranking of fuzzy numbers in the setting of possibility theory. Inf. Sci. 30(3), 183–224 (1983)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Hisdal, E.: The If THEN ELSE statement and interval-valued fuzzy sets of higher type. Int. J. Man Mach. Stud. 15, 385–455 (1981)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Horng, Y.J., Chen, S.M., Chang, Y.C., Lee, C.H.: A new method for fuzzy information retrieval based on fuzzy hierarchical clustering and fuzzy inference techniques. IEEE Trans. Fuzzy Syst. 13(2), 216–228 (2005)Google Scholar
  32. 32.
    Hung, W.L., Yang, M.S.: Similarity measures between type-2 fuzzy sets. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 12, 827–841 (2004)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Jain, R.: Decision making in the presence of fuzzy variables. IEEE Trans. Syst. Man Cybern. 6(10), 698–703 (1976)zbMATHGoogle Scholar
  34. 34.
    John, R.I., Czarnecki, C.: A type-2 adaptive fuzzy inferencing system. In: Proceedings of 1998 International Conference Systems, Man and Cybernetics, San Diego, CA, pp. 2068–2073 (Oct. 1998)Google Scholar
  35. 35.
    John, R.I.: Type 2 fuzzy sets: an appraisal of theory and applications. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 6, 563–576 (1998)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Kahraman, C., Oztaysi, B., Saria, I.U., Turanoglu, E.: Fuzzy analytic hierarchy process with interval type-2 fuzzy sets. Knowl. Based Syst. (KBS) 59, 48–57 (2014)Google Scholar
  37. 37.
    Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy set. Inform. Sci. 132, 195–220 (2001)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Keshavarz Ghorabaee, M., Amiri, M., Zavadskas, E.K., Turskis, Z.: Multi-criteria group decision-making using an extended EDAS method with interval type-2 fuzzy sets. E M Ekonomie a Manag. 20(1), 48–68 (2017)Google Scholar
  39. 39.
    Keshavarz Ghorabaee, M., Amiri, M., Kazimieras Zavadskas, E., Antucheviien, J.: Assessment of third-party logistics providers using a CRITIC-WASPAS approach with interval type-2 fuzzy sets. Transport 32(1), 66–78 (2017)Google Scholar
  40. 40.
    Keshavarz Ghorabaee, M., Amiri, M., Zavadskas, E.K., Turskis, Z., Antucheviciene, J.: A new multi-criteria model based on interval type-2 fuzzy sets and EDAS method for supplier evaluation and order allocation with environmental considerations. Comput. Ind. Eng. 112, 156–174 (2017)Google Scholar
  41. 41.
    Keshavarz Ghorabaee, M., Zavadskas, E.K., Amiri, M., Antucheviciene, J.: A new method of assessment based on fuzzy ranking and aggregated weights (AFRAW) for MCDM problems under type-2 fuzzy environment. Econ. Comput. Econ. Cybern. Stud. Res. 50(1), 39–68 (2016)Google Scholar
  42. 42.
    Keshavarz Ghorabaee, M., Amiri, M., Salehi Sadaghiani, J., Zavadskas, E.K.: Multi-criteria project selection using an extended VIKOR method with interval type-2 fuzzy sets. Int. J. Inf. Technol. Decis. Mak. 14(5), 993–1016 (2015)Google Scholar
  43. 43.
    Keshavarz Ghorabaee, M., Zavadskas, E.K., Amiri, M., Antucheviciene, J.: Evaluation by an area-based method of ranking interval type-2 fuzzy sets (EAMRIT-2F) for multi-criteria group decision-making. Transform. Bus. Econ. 15(3), 76–95 (2016)Google Scholar
  44. 44.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall, Upper Saddle River (1995)zbMATHGoogle Scholar
  45. 45.
    Lee, S., Lee, K.H., Lee, D.: Comparison of type-2 fuzzy values with satisfaction. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 12, 601–611 (2004)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Lee, L.W., Chen, S.M.: Fuzzy multiple attributes group decision-making based on the extension of topsis method and interval type-2 fuzzy sets. In: Proceedings of 2008 International Conference on Machine Learning and Cybernetics, vol. 1. No. 7, pp. 3260–3265 (2008)Google Scholar
  47. 47.
    Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8, 535–550 (2000)Google Scholar
  48. 48.
    Liang, C., Wu, J., Zhang, J.: Ranking indices and rules for fuzzy numbers based on gravity center point. In: Paper Presented at the 6th World Congress on Intelligent Control and Automation, pp. 21–23. Dalian, China (2006)Google Scholar
  49. 49.
    Mendel, J.M.: Uncertainty, fuzzy logic and signal processing. Signal Process. 80, 913–933 (2000)zbMATHGoogle Scholar
  50. 50.
    Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, Upper Saddle River (2001)zbMATHGoogle Scholar
  51. 51.
    Mendel, J.M., John, R.I.B.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(1), 117–127 (2002)Google Scholar
  52. 52.
    Mendel, J.M., John, R.I., Liu, F.L.: Interval type-2 fuzzy logical systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)Google Scholar
  53. 53.
    Mitchell, H.B.: Correlation coefficient for type-2 fuzzy sets. Int. J. Intell. Syst. 21, 143–154 (2006)zbMATHGoogle Scholar
  54. 54.
    Mitchell, H.B.: Ranking type-2 fuzzy numbers. IEEE Trans. Fuzzy Syst. 14(2), 287–294 (2006)Google Scholar
  55. 55.
    Mitchell, H.B.: Pattern recognition using type-2 fuzzy sets. Inf. Sci. 170, 409–418 (2005)Google Scholar
  56. 56.
    Mizumoto, M., Tanaka, K.: Some properties of fuzzy sets of type-2. Inf. Control 31, 312–340 (1976)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Mizumoto, M., Tanaka, K.: Fuzzy sets of type-2 under algebraic product and algebraic sum. Fuzzy Sets Syst. 5, 277–290 (1976)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Murakami, S., Maeda, S., Imamura, S.: Fuzzy decision analysis on the development of centralized regional energy control system. In: Proceedings of the IFAC Symposium on Fuzzy Information, Knowledge Representation and Decision Analysis, pp. 363–368 (1983)Google Scholar
  59. 59.
    Turksen, I.B.: Interval valued fuzzy sets based on normal forms. Fuzzy Sets Syst. 20, 191–210 (1986)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Turksen, I.B.: Type-2 fuzziness in the new millenium. In: Mastorakis, M. (ed.) Advances in Fuzzy Systems and Evolutionary Computing. World Scientific, Singapore (2001)Google Scholar
  61. 61.
    Turksen, I.B.: Type-2 representation and reasoning for CWW. Fuzzy Sets Syst. 127, 17–36 (2002)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Wang, X., Kerre, E.E.: Reasonable properties for the ordering of fuzzy quantities (I). Fuzzy Sets Syst. 118, 375–385 (2001)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Wang, Y.J., Lee, H.S.: The revised method of ranking fuzzy numbers with an area between the centroid and original points. Comput. Math. Appl. 55, 2033–2042 (2008)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Wang, Y.M., Luo, Y.: Area ranking of fuzzy numbers based on positive and negative ideal points. Comput. Math. Appl. 58(9), 1769–1779 (2009)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Wang, Z.X., Liu, Y.J., Fan, Z.P., Feng, B.: Ranking L-R fuzzy number based on deviation degree. Inf. Sci. 179(13), 2070–2077 (2009)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Wu, H., Mendel, J.M.: Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 10, 622–639 (2002)Google Scholar
  67. 67.
    Wu, D., Mendel, J.M.: A comparative study of ranking methods, similarity measures and uncertainty measures for interval type-2 fuzzy sets. Inf. Sci. 179, 1169–1192 (2009)MathSciNetGoogle Scholar
  68. 68.
    Yager, R.R.: Fuzzy subsets of type-2 in decisions. J. Cybern. 10, 137–159 (1980)MathSciNetGoogle Scholar
  69. 69.
    Yager, R.R.: Ranking fuzzy subsets over the unit interval. In: Proceedings of the 17th IEEE International Conference on Decision and Control, San Diago, California, pp. 1435–1437 (1978)Google Scholar
  70. 70.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 8(3), 199–249 (1975)MathSciNetzbMATHGoogle Scholar
  71. 71.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)zbMATHGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2018

Authors and Affiliations

  1. 1.Mathematics DepartmentUniversity of Sistan and BaluchestanZahedanIran

Personalised recommendations