Extrapolation multiscale multigrid method for solving 2D Poisson equation with sixth order compact scheme

  • Ming Li
  • Zhoushun Zheng
  • Kejia PanEmail author
Original Research


We present an extrapolation multiscale multigrid (EMMG) algorithm to solve the large linear systems arising from a sixth order compact discretization of the two dimensional Poisson equation, based on multigrid method and an extrapolation operator. With the help of Taylor expansion and interpolation theory, we develop three mid-point extrapolation formulas and combine it with the classical Richardson extrapolation strategy to design an extrapolation operator. Applying this proposed extrapolation operator for the sixth order difference solutions on the finest and finer grids, which have been computed by V-cycle multigrid method, we can construct an eighth order accurate extrapolation solution on the entire finest grid directly and efficiently. Moreover, we discuss the error of EMMG method in theoretically, and conduct some numerical experiments on square or reentrant domains, to verify that our EMMG algorithm can achieve eighth order convergence and keep less cost simultaneously.


Extrapolation Multiscale multigrid method Sixth order compact discretization Poisson equation 

Mathematics Subject Classification

65N06 65N55 



The authors would like to thank the editor and anonymous reviewers for their valuable comments and suggestions, which were helpful in improving the paper.


  1. 1.
    Asadzadeh, M., Schatz, A.H., Wendland, W.: Asymptotic error expansions for the finite element method for second order elliptic problems in $R^N, N \ge 2$, I: local interior expansions. SIAM J. Numer. Anal. 48(5), 2000–2017 (2010)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Blum, H., Lin, Q., Rannacher, R.: Asymptotic error expansion and Richardson extrapolation for linear finite elements. Numer. Math. 49(1), 11–37 (1986)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bornemann, F.A., Deuflhard, P.: The cascadic multigrid method for elliptic problems. Numer. Math. 75, 135–152 (1996)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia (2000)zbMATHGoogle Scholar
  5. 5.
    Chen, C.M., Lin, Q.: Extrapolation of finite element approximation in a rectangular domain. J. Comput. Math. 7(3), 227–233 (1989)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chen, C.M., Hu, H.L., et al.: Analysis of extrapolation cascadic multigrid method (EXCMG). Sci. China Ser. A Math. 51, 1349–1360 (2008)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Chen, C.M., Shi, Z.C., Hu, H.L.: On extrapolation cascadic multigrid method. J. Comput. Math. 29(6), 684–697 (2011)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Chen, C.M., Hu, H.L.: Extrapolation cascadic multigrid method on piecewise uniform grid. Sci. China Math. 56(12), 2711–2722 (2013)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Cheney, W., Kincard, D.: Numerical Mathematics and Computing, 4th edn. Brooks/Cole Publishing, Pacific Grove (1999)Google Scholar
  10. 10.
    Dai, R.X., Zhang, J., Wang, Y.: Higher order ADI method with completed Richardson extrapolation for solving unsteady convection-diffusion equations. Comput. Math. Appl. 71, 431–442 (2016)MathSciNetGoogle Scholar
  11. 11.
    Dai, R.X., Lin, P.P., Zhang, J.: An efficient sixth-order solution for anisotropic Poisson equation with completed Richardson extrapolation and multiscale multigrid method. Comput. Math. Appl. 73(8), 1865–1877 (2017)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Dai, R.X., Zhang, J., Wang, Y.: Multiple coarse grid acceleration for multiscale multigrid computation. J Comput. Appl. Math. 269(3), 75–85 (2014)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Deuflhard, P.: Cascadic conjugate gradient methods for elliptic partial differential equations: algorithm and numerical results. Contemp. Math. 180, 29–42 (1994)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Elman, H.C., Ernst, O.G., Oleary, D.P.: A multigrid method enhanced by Krylov subspace iteration for discrete Helmholtz equations. SIAM J. Sci. Comput. 23(4), 1291–1315 (2001)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Erlangga, Y.A., Oosterlee, C.W., Vuik, C.: A novel multigrid based precondtioner for heterogeneous Helmholtz problems. SIAM J. Sci. Comput. 27(4), 1471–1492 (2006)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Fairweather, G., Lin, Q., Lin, Y.P., et al.: Asymptotic expansions and Richardson extrapolation of approximate solutions for second order elliptic problems on rectangular domains by mixed finite element methods. SIAM J. Numer. Anal. 44(3), 1122–1149 (2006)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Ge, Y.B.: Multigrid method and fourth-order compact difference discretization scheme with unequal meshsizes for 3D poissson euqation. J. Comput. Phys. 229(18), 6381–6391 (2010)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Ge, Y.B.: Multigrid method based on the transformation-free HOC scheme on nonuniform grids for 2D convection diffusion problems. J. Comput. Phys. 230(10), 4051–4070 (2011)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Gupta, M.M., Kouatchou, J., Zhang, J.: Comparison of second and fourth order discretization for multigrid Poisson solver. J. Comput. Phys. 132, 663–674 (1997)MathSciNetGoogle Scholar
  20. 20.
    Gupta, M.M., Zhang, J.: High accuracy multigrid solution of the 3D convection-diffusion euqaiton. Appl. Math. Comput. 113(2), 249–274 (2000)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Hackbusch, W.: Multi-grid Methods and Applications. Springer, Berlin (1985)zbMATHGoogle Scholar
  22. 22.
    Hu, H.L., Chen, C.M., Pan, K.J.: Asymptotic expansions of finite element solutions to Robin problems in $H^3$ and their application in extrapolation cascadic multigrid method. Sci. China Math. 57, 687–698 (2014)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Hu, H.L., Chen, C.M., Pan, K.J.: Time-extrapolation algorithm (TEA) for linear parabolic problems. J. Comput. Math. 32, 183–194 (2014)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Hu, H.L., Ren, Z.Y., et al.: On the convergence of an extrapolation cascadic multigrid method for elliptic problems. Comput. Math. Appl. 74(4), 759–771 (2017)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Li, C.L.: A new parallel cascadic multigrid method. Appl. Math. Comput. 219, 10150–10157 (2013)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Li, M., Li, C.L.: New cascadic multigrid methods for two-dimensional Poisson problem based on the fourth-order compact difference scheme. Math. Methods Appl. Sci. 41(3), 920–928 (2018)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Li, M., Li, C.L., et al.: Cascadic multigrid methods combined with sixth order compact scheme for Poisson equation. Numer. Algorithms 71(4), 715–727 (2016)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Li, M., Zheng, Z.S., Pan, K.J.: An extrapolation full multigrid algorithm combined with fourth-order compact scheme for convection-diffusion equations. Adv. Differ. Equ. 2018, 178 (2018)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Lin, Q., Lu, T., Shen, S.M.: Maximum norm estimate, extrapolation and optimal point of stresses for finite elelment methods on strogle regular triangulation. J. Comput. Math. 1(4), 376–383 (1983)zbMATHGoogle Scholar
  30. 30.
    Marchuk, G.I., Shaidurov, V.V.: Difference Methods and Their Extrapolations, vol. 5, no. pp. 195–196. Springer, Berlin (1983)Google Scholar
  31. 31.
    Othman, M., Abdullah, A.R.: An efficient multigrid Poisson solver. Int. J. Comput. Math. 71(4), 541–553 (1999)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Pan, K.J., He, D.D., Chen, C.M.: An extrapolation cascadic multigrid method for elliptic problems on reentrant domains. Adv. Appl. Math. Mech. 9(6), 1347–1363 (2016)MathSciNetGoogle Scholar
  33. 33.
    Pan, K.J., Tang, J.T., et al.: Extrapolation cascadic multigrid method for 2.5D direct current resistivity modeling (in Chinese). Chin. J. Geophys. 55, 2769–2778 (2012)Google Scholar
  34. 34.
    Pan, K.J., He, D.D., et al.: A new extrapolation cascadic multigrid method for three dimensional elliptic boundary value problems. J. Comput. Phys. 344, 499–515 (2017)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Pan, K.J., He, D.D., Hu, H.L.: An extrapolation cascadic multigrid method combined with a fourth-order compact scheme for 3D Poisson equation. J. Sci. Comput. 70, 1180–1203 (2017)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Richardson, L.F.: The approximate solution of physical problems involving differential equations using finite differences, with an application to the stress in a masonry dam. Philos. Trans. R. Soc. Lond. Ser. A. 210, 307–357 (1910)Google Scholar
  37. 37.
    Richardson, L.F.: The deferred approach to the limit. I: the single lattice. Philos. Trans. R. Soc. Lond. Ser. A. 226, 299–349 (1927)zbMATHGoogle Scholar
  38. 38.
    Roache, P.J., Knupp, P.M.: Completed Richardson extrapolation. Commun. Numer. Methods Eng. 9, 365374 (1993)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Shi, Z.C., Xu, X.J., Huang, Y.Q.: Economical cascadic multigrid methods (ECMG). Sci. China Ser. A Math. 50, 1765–1780 (2007)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Stolk, C.C., Ahmed, M., Bhowmik, S.K.: A multigrid method for the Helmholtz equation with optimized coarse grid corrections. SIAM J. Sci. Comput. 36(6), A2819–A2841 (2013)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Sun, H.W., Zhang, J.: A high order finite difference discretization strategy based on extrapolation for convection-diffusion equations. Numer. Methods Partial Differ. Equ. 20(1), 18–32 (2004)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Thekale, A., Gradl, T., et al.: Optimizing the number of multigrid cycle in the full multigrid algorithm. Numer. Linear Algebra 17(2–3), 199–210 (2010)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Tian, Z.F.: Compact high-order difference methods for solving the Poisson equation (in Chinese). J. Northwest Univ. 26(2), 109–114 (1996)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Trottenberg, U., Oosterlee, C.W.: A. Schller, Multigrid. Academic Press, London (2001)Google Scholar
  45. 45.
    Wang, Y., Zhang, J.: Sixth order compact scheme combined with multigrid method and extrapolation technique for 2D Poisson equation. J. Comput. Phys. 228(1), 137–146 (2009)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Wang, Y., Su, Y., Dai, R.X., Zhang, J.: A 15-point high-order compact scheme with multigrid computation for solving 3D convection diffusion equations. Int. J. Comput. Math. 92(2), 411–423 (2015)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Zhai, S.Y., Feng, X.L., He, Y.N.: A new method to deduce high-order compact difference schemes for two-dimensional Poisson equation. Appl. Math. Comput. 230, 9–26 (2014)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Zhang, J.: Multigrid method and fourth order compact difference scheme for 2D Poisson equation with unequal meshsize discretization. J. Comput. Phys. 179, 170–179 (2002)zbMATHGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsCentral South UniversityChangshaChina
  2. 2.Department of MathematicsHonghe UniversityMengziChina

Personalised recommendations