Advertisement

On the global dynamics of a rational difference equation with periodic coefficients

  • Imane Dekkar
  • Nouressadat TouafekEmail author
  • Qamar Din
Original Research
  • 99 Downloads

Abstract

The aim of this paper is to investigate the qualitative behavior of a higher-order nonautonomous rational difference equation with periodic coefficients. Particularly, our investigation gives some answers to two open problems proposed by Camouzis and Ladas in their monograph (Dynamics of third order rational difference equations with open problems and conjectures. CRC, Boca Raton, 2008).

Keywords

Nonautonomous difference equation Boundedness Uniform asymptotic stability Global attractivity 

Mathematics Subject Classification

39A10 

Notes

Acknowledgements

The authors would like to thank the four referees for their valuable remarks and suggestions that have improved the quality of an earlier version of this paper.

References

  1. 1.
    Camouzis, E., Ladas, G.: Dynamics of Third Order Rational Difference Equations With Open Problems and Conjectures. Chapman & Hall/CRC, Boca Raton (2008)zbMATHGoogle Scholar
  2. 2.
    Dekkar, I., Touafek, N., Yazlik, Y.: Global stability of a third-order nonlinear system of difference equations with period-two coefficients. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 111, 325–347 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dekkar, I., Touafek, N.: Existence and global attractivity of periodic solutions in a max-type system of difference equations. Turk. J. Math. 41, 412–425 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dekkar, I.: Variations sur les équations aux différences (non) autonomes. (Doctoral dissertation), Mohamed Seddik Ben Yahia University, Jijel, Algeria (2017)Google Scholar
  5. 5.
    Elaydi, S.: An Introduction to Difference Equations, Undergraduate Texts in Mathematics, 3rd edn. Springer, New York (2005)Google Scholar
  6. 6.
    Gumus, M.: The global asymptotic stability of a system of difference equations. J. Differ. Equ. Appl. 24(6), 976–991 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gumus, M., Ocalan, O.: The qualitative analysis of a rational system of difference equations. J. Fract. Calc. Appl. 9(2), 113–126 (2018)MathSciNetGoogle Scholar
  8. 8.
    Gumus, M., Abo-Zeid, R.: On the solutions of a \((2k+2)\)th order difference equation. Dyn. Contin. Discrete Impuls Syst. Ser. B Appl. Algorithms 25, 129–143 (2018)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Haddad, N., Touafek, N., Rabago, J.F.T.: Solution form of a higher-order system of difference equations and dynamical behavior of its special case. Math. Methods Appl. Sci. 40(10), 3599–3607 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Haddad, N., Touafek, N., Rabago, J.F.T.: Well-defined solutions of a system of difference equations. J. Appl. Math. Comput. 56(1–2), 439–458 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hamza, A.E., Ahmed, A.M., Youssef, A.M.: On the recursive sequence \(x_{n+1}=\frac{a+b x_{n}}{A +B x_{n-1}^{k}}\). Arab. J. Math. Sci. 17, 31–44 (2011)MathSciNetGoogle Scholar
  12. 12.
    Hu, L.X., Xia, H.M.: Global asymptotic stability of a second order rational difference equation. Appl. Math. Comput. 233, 377–382 (2014)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Hu, L.X., He, W.S., Xia, H.M.: Global asymptotic behavior of a rational difference equation. Appl. Math. Comput. 218, 7818–7828 (2012)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Ibrahim, T.F.: Periodicity and analytic solution of a recursive sequence with numerical examples. J. Interdiscip. Math. 12(5), 701–708 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ibrahim, T.F.: Boundedness and stability of a rational difference equation with delay. Rev. Roum. Math. Pure A 57(3), 215–224 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Ibrahim, T.F., Touafek, N.: On a third order rational difference equation with variable coeffitients. Dyn. Contin. Discrete Impuls Syst. Ser. B Appl. Algorithms 20, 251–264 (2013)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kocic, V.L., Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Kluwer Academic Publishers, Dordrecht (1993)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kocic, V.L., Ladas, G., Rodrigues, L.W.: On rational recursive sequences. J. Math. Anal. Appl. 173, 127–157 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kulenović, M.R.S., Ladas, G.: Dynamics of Second Order Rational Difference Equations With Open Problems and Conjectures. Chapman & Hall/CRC, Boca Raton (2002)zbMATHGoogle Scholar
  20. 20.
    Lakshmikantham, V., Trigiante, D.: Theory of Difference Equations, Numerical Methods and Applications. Marcel Dekker, Inc., New York (2002)CrossRefzbMATHGoogle Scholar
  21. 21.
    Liu, P., Wang, C., Li, Y., Li, R.: Asymptotic behavior of equilibrium point for a system of fourth-order rational difference equations. J. Comput. Anal. Appl. 27(6), 947–961 (2019)Google Scholar
  22. 22.
    Qian, C.: Global attractivity of periodic solutions in a higher order difference equations. Appl. Math. Lett. 26, 578–583 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sedaghat, H.: Nonlinear Difference Equations: Theory with Applications to Social Science Models. Kluwer Academic, Dordrecht (2003)CrossRefzbMATHGoogle Scholar
  24. 24.
    Thai, T.H., Khuong, V.V.: Global asymptotic stability of a second-order system of difference equations. Indian J. Pure Appl. Math. 45(2), 185–198 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Touafek, N.: On a second order rational difference equation. Hacet. J. Math. Stat. 41, 867–874 (2012)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Wang, C., Zhou, Y., Pan, S., Li, R.: On a system of three max-type nonlinear difference equations. J. Comput. Anal. Appl. 25(8), 1463–1479 (2018)MathSciNetGoogle Scholar
  27. 27.
    Wang, C., Fang, X., Li, R.: On the dynamics of a certain four-order fractional difference equations. J. Comput. Anal. Appl. 22(5), 968–976 (2017)MathSciNetGoogle Scholar
  28. 28.
    Wang, C., Jing, X., Hu, X., Li, R.: On the periodicity of a max-type rational difference equation. J. Nonlinear Sci. Appl. 10(9), 4648–4661 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Wang, C., Fang, X., Li, R.: On the solution for a system of two rational difference equations. J. Comput. Anal. Appl. 20(1), 175–186 (2016)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Wang, C., Liu, H., Li, R., Hu, X., Shao, Y.: Boundedness character of a symmetric system of max-type difference equations. IAENG Int. J. Appl. Math. 46(4), 505–511 (2016)Google Scholar
  31. 31.
    Wang, C., Wang, S., Wang, W.: Global asymptotic stability of equilibrium point for a family of rational difference equations. Appl. Math. Lett. 24, 714–718 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Wang, C., Wang, S., Wang, Z., Gong, F., Wang, R.: Asymptotic stability for a class of nonlinear difference equation. Discrete Dyn. Nat. Soc. 2010, 791610 (2010)Google Scholar
  33. 33.
    Wang, C., Shi, Q., Wang, S.: Asymptotic behavior of equilibrium point for a family of rational difference equations. Adv. Differ. Equ. 2010, 505906 (2010)Google Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2018

Authors and Affiliations

  1. 1.LMAM Laboratory and Department of MathematicsMohamed Seddik Ben Yahia UniversityJijelAlgeria
  2. 2.Department of MathematicsUniversity of Poonch RawalakotRawalakotPakistan

Personalised recommendations