Fractional optimal control of an HIV/AIDS epidemic model with random testing and contact tracing

• H. Kheiri
• M. Jafari
Original Research

Abstract

In this paper, we present a fractional model for transmission dynamics of HIV/AIDS with random testing and contact tracing and incorporate into the model the control parameters of condom use and antiretroviral therapy (ART) aimed at controlling the spread of HIV/AIDS epidemic. The stability of equilibria of the model is discussed using the stability theorem and using the fractional La-Salle invariance principle for fractional differential equations. The effect of the fractional derivative order $$\alpha$$ ($$0.6\le \alpha <1$$) on the HIV/AIDS epidemic model is investigated. The numerical results show that the derivative order $$\alpha$$ can play the role of precautionary measures against infection transmission, treatment of infection and delay in accepting HIV test. We give a general formulation for a fractional optimal control problem, in which the state and co-state equations are given in terms of the left fractional derivatives. We develop the Forward–Backward sweep method using the Adams-type predictor–corrector method to solve the fractional optimal control of the model. The results show that implementing the ART treatment control of diagnosed HIV-infected people together with contact tracing results in a significant decrease in the number of undiagnosed HIV-infected population and AIDS people. Also, implementing all the control efforts decreases significantly the number of diagnosed and undiagnosed HIV-infected population and AIDS people. In addition, the values of the controls are reduced when the fractional derivative order $$\alpha$$ limits to 1 ($$0< \alpha < 1$$).

Keywords

Fractional optimal control Diseases modeling Numerical simulation HIV/AIDS dynamics

Mathematics Subject Classification

26A33 37B25 37M05 49K15

References

1. 1.
Anderson, R.M., Medly, G.F., May, R.M., Johnson, A.M.: A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS. IMA J. Math. Appl. Med. Biol. 3, 229–263 (1986)
2. 2.
Egonmwan, A.O., Okuonghae, D.: Analysis of a mathematical model for tuberculosis with diagnosis. J. Appl. Math. Comput. (2018).
3. 3.
Pitchaimani, M., Monica, C.: Global stability analysis of HIV-1 infection model with three time delays. J. Appl. Math. Comput. 48(1–2), 293–319 (2015).
4. 4.
Guihua, L., Zhen, J.: Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period. Chaos Soliton Fractals 25(5), 1177–1184 (2005)
5. 5.
Tripathi, A., Naresh, R., Sharma, D.: Modelling the effect of screening of unaware infectives on the spread of HIV infection. Appl. Math. Comput. 184, 1053–1068 (2007)
6. 6.
Mukandavire, Z., Gumel, A.B., Garira, W., Tchuenche, J.M.: Mathematical analysis of a model for HIV-malaria co-infection. Math. Biosci. Eng. 6, 333–362 (2009)
7. 7.
Hernandez-Vargasa, E.A., Middleton, R.H.: Modeling the three stages in HIV infection. J. Theor. Biol. 320, 33–40 (2013)
8. 8.
Mastroberardino, A., Cheng, Y., Abdelrazec, A., Liu, H.: Mathematical modeling of the HIV/AIDS epidemic in Cuba. Int. J. Biomath. 08, 1550047 (2015).
9. 9.
Jabbari, A., kheiri, H., Jodayree Akbarfam, A., Bekir, A.: Dynamical analysis of the avian–human influenza epidemic model using multistage analytical method. Int. J. Biomath. 09, 1650090 (2016).
10. 10.
Mojaver, A., Kheiri, H.: Dynamical analysis of a class of hepatitis C virus infection models with application of optimal control. Int. J. Biomath. 09, 1650038 (2016).
11. 11.
Karrakchou, J., Rachik, M., Gourari, S.: Optimal control and infectiology: application to an HIV/AIDS model. Appl. Math. Comput. 177, 807–818 (2006)
12. 12.
Adams, B.M., Banks, H.T., Kwon Hee-Dae, T.T., Hien, T.: Dynamic multidrug therapies for HIV: optimal and STI control approaches. Math. Biosci. Eng. 1, 223–241 (2004)
13. 13.
Das, A., Pal, M.: A mathematical study of an imprecise SIR epidemic model with treatment control. J. Appl. Math. Comput. 56(1–2), 477–500 (2018).
14. 14.
Mukandavire, Z., Garira, W., Tchuenche, J.M.: Modelling effects of public health educational campaigns on HIV/AIDS transmission dynamics. Appl. Math. Model. 33, 2084–2095 (2009)
15. 15.
Yang, J.Y., Chen, Y., Zhang, F.Q.: Stability analysis and optimal control of a hand-foot-mouth disease (HFMD) model. J. Appl. Math. Comput. 41(1–2), 99–117 (2013).
16. 16.
Okosun, K.O., Makinde, O.D., Takaidza, I.: Impact of optimal control on the treatment of HIV/AIDS and screening of unaware infectives. Appl. Math. Model. 37, 3802–3820 (2013)
17. 17.
Mwanga, G.G., Aly, S., Haario, H., Nannyonga, B.K.: Optimal control of malaria model with drug resistance in presence of parameter uncertainty. App. Math. Sci. 8, 2701–2730 (2014)Google Scholar
18. 18.
Choi, S., Jung, E., Lee, S.M.: Optimal intervention strategy for prevention tuberculosis using a smoking tuberculosis model. J. Theor. Biol. 380, 256–270 (2015)
19. 19.
Okyere, E., Oduro, F.T., Amponsah, S.K., Dontwi, I.K.: Fractional order optimal control model for malaria infection (2016). arXiv preprint arXiv:1607.01612
20. 20.
Vitanov, N.K., Ausloos, M.R.: Knowledge epidemics and population dynamics models for describing idea diffusion. In: Scharnhorst, A., Boerner, K., van den Besselaar, P. (eds.) Models of Science Dynamics: Encounters Between Complexity Theory and Information Sciences, pp. 69–125. Springer, Berlin (2012). (Ch. 3) Google Scholar
21. 21.
Saeedian, M., Khalighi, M., Azimi Tafreshi, N., Jafari, G.R., Ausloos, M.: Memory effects on epidemic evolution: the susceptible infected recovered epidemic model. Phys. Rev. E 95(2), 022409 (2017)
22. 22.
Okyere, E., Oduro, F.T., Amponsah, S.K., Dontwi, I.K., Frempong, N.K.: Fractional order SIR model with constant population. Br. J. Math. Comput. Sci. 14(2), 1–12 (2016)Google Scholar
23. 23.
Sun, H.G., Chen, W., Wei, H., chen, Y.Q.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193(1), 185–192 (2011)Google Scholar
24. 24.
Petras, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, Berlin (2011)
25. 25.
Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering. Academic Press, San Diego (1999)
26. 26.
Rihan, F.A.: Numerical modeling of fractional-order biological systems. Abstr. Appl. Anal. 2013, Article ID 816803 (2013)Google Scholar
27. 27.
Sun, H.G., chen, Y.Q., Chen, W.: Random-order fractional differential equation models. Signal Process. 91(3), 525–530 (2011)
28. 28.
Chen, W., Liang, Y.: New methodologies in fractional and fractal derivatives modeling. Chaos Solitons Fractals 102, 72–77 (2017)
29. 29.
Pinto, C.M.A., Carvalho, A.R.M.: New findings on the dynamics of hiv and tb coinfection modelsl. Appl. Math. Comput. 242, 36–46 (2014)
30. 30.
Ahmed, E., El-Saka, H.A.: On fractional order models for hepatitis C. Nonlinear Biomed. Phys. 4, 1–3 (2010)Google Scholar
31. 31.
Ding, Y., Ye, H.: A fractional-order differential equation model of HIV infection of CD4+ T-cells. Math. Comput. Model. 50, 386–392 (2009)
32. 32.
Kheiri, H., Jafari, M.: Stability analysis of a fractional order model for the HIV/AIDS epidemic in a patchy environment. J. Comput. Appl. Math. 346, 323–339 (2018)
33. 33.
Singh, J., Kumar, D., Hammouch, Z., Atangana, A.: A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput. 316, 504–515 (2018)
34. 34.
Singh, J., Kumar, D., Baleanu, D., Rathore, S.: An efficient numerical algorithm for the fractional Drinfeld–Sokolov–Wilson equation. Appl. Math. Comput. 335, 12–24 (2018)
35. 35.
Singh, J., Kumar, D., Baleanu, D.: A new analysis of Fornberg-Whitham equation pertaining to a fractional derivative with Mittag–Leffler type kernel. Eur. Phys. J. Plus 133, 70 (2018). Google Scholar
36. 36.
Singh, J., Kumar, D., Baleanu, D.: On the analysis of chemical kinetics system pertaining to a fractional derivative with Mittag–Leffler-type kernel. Chaos 27, 103113 (2017)
37. 37.
He, s, Banerjee, S.: Epidemic outbreaks and its control using a fractional order model with seasonality and stochastic infection. Physica A 501, 408–417 (2018)
38. 38.
Hsieh, Y.H., de Arazoza, H., Lounes, R., Joanes, J.: A class of methods for HIV contact tracing in Cuba: implications for intervention and treatment. Determ. Stoch. Models AIDS Epidemics HIV Infect. Interv. (2005).
39. 39.
Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 323–337 (2004)
40. 40.
Agrawal, O.P.: A quadratic numerical scheme for fractional optimal control problems. J. Dyn. Syst. Meas. Control 130, 011010-1–011010-6 (2008)Google Scholar
41. 41.
Basir, F.A., Elaiw, A.M., Kesh, D., Roy, P.K.: Optimal control of a fractional-order enzyme kinetic model. Control Cybern. 44, 1–18 (2015)
42. 42.
Sweilam, N.H., Al-Mekhla, S.M.: On the optimal control for fractional multi-strain TB model. Optim. Control Appl. Methods (2016).
43. 43.
Ding, Y., Wang, Z., Ye, H.: Optimal control of a fractional-order HIV-immune system with memory. IEEE Trans. Control Syst. Technol. 13, 763–769 (2012)Google Scholar
44. 44.
Lenhart, S., Workman, T.: Optimal Control Applied to Biological Models. Chapman and Hall, New York (2007)
45. 45.
McAsey, M., Mou, L., Han, H.: Convergence of the forward–backward sweep method in optimal control. Comput. Optim. Appl. 53, 207–226 (2012)
46. 46.
Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution differential equations. Nonlinear Dyn. 29, 3–22 (2002)
47. 47.
Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Nonlinear Dyn. 35, 31–52 (2004)
48. 48.
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, New York (2006)
49. 49.
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives-Theory and Applications. Gordon and Breach, Linghorne (1993)
50. 50.
Diethelm, K.: The Analysis of Fractional Differential Equations, An Application-Oriented Exposition Using Operators of Caputo Type. Springer, Berlin (2004)
51. 51.
Gorry, C.: Cuba’s HIV/AIDS Strategy: An Integrated, Rights-Based Approach. Oxfam International, Havana (2008)Google Scholar
52. 52.
Odibat, Z.M., Shawagfeh, N.T.: Generalized Taylors formula. Appl. Math. Comput. 186, 286–293 (2007)
53. 53.
Lin, W.: Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl. 332, 709–726 (2007)
54. 54.
van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshhold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)
55. 55.
Li, C., Ma, Y.: Fractional dynamical systemand its linearization theorem. Nonlinear Dyn. 71, 621–633 (2013)
56. 56.
Mishina, A.M., Proskuryako, I.V.: Higher Algebra. Nauka, Moscow (1965)Google Scholar
57. 57.
Huo, J., Zhao, H., Zhu, L.: The effect of vaccines on backward bifurcation in a fractional order HIV model. Nonlinear Anal. RWA 26, 289–305 (2015)
58. 58.
Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2951–2957 (2014)
59. 59.
Agrawal, O.P.: General formulation for the numerical solution of optimal control problems. Int. J. Control 50, 627–638 (1989)
60. 60.
Meiberg, A.E., Bos, A.E.R., Onya, H.E., Schaalma, H.P.: Fear of stigmatization as barrier to voluntary HIV counselling and testing in South Africa. East Afr. J. Public Health 5(2), 49–54 (2008)Google Scholar
61. 61.
Rapatski, B., Klepac, P., Duecks, S., Liu, M., Weiss, L.I.: Mathematical epidemiology of HIV/AIDS in Cuba during the period 1986–2000. Math. Biosci. Eng. 3, 545–556 (2006)
62. 62.
Mastroberardino, T.: Mathematical Modeling of the HIV/AIDS Epidemic in Cuba. AMS Eastern Sectional Meeting University of Maryland, Baltimore County (2014)