Journal of Applied Mathematics and Computing

, Volume 50, Issue 1–2, pp 139–155 | Cite as

Existence of positive solutions for a fourth-order three-point boundary value problem

Original Research

Abstract

In this paper, we are concerned with a fourth-order three point boundary value problem. We prove the existence, uniqueness and positivity of solutions by using Leray–Schauder nonlinear alternative, Banach contraction theorem and Guo–Krasnosel’skii fixed point theorem.

Keywords

Guo–Kranosel’skii fixed point theorem Three point boundary value problem Positive solution Leray–Schauder nonlinear alternative Contraction principle 

Mathematics Subject Classification

34B10 34B15 34B18 

References

  1. 1.
    Anderson, D.R.: Green’s function for a third-order generalized right focal problem. J. Math. Anal. Appl. 288, 1–14 (2003)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Agarwal, R.P., O’Regan, D., Wong, P.: Positive Solutions of Differential Equations, Difference, and Integral Equations. Kluwer Academic, Boston (1999)CrossRefMATHGoogle Scholar
  3. 3.
    Bai, Z., Wang, H.: On positive solutions of some nonliear fourth-order beam equations. J. Math. Anal. Appl. 270, 357–368 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chen, J., Tariboon, J., Koonprasert, S.: Existence of positive solutions to a second-order multi-point boundary value problem with delay, Thai J. Math. Special Issue (Annual Meeting in Mathematics, 2010): 21–32 (2010)Google Scholar
  5. 5.
    Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)CrossRefMATHGoogle Scholar
  6. 6.
    Graef, J.R., Henderson, Yang, B.: Positive solutions of a nonlinear nth order eigenvalue problem. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 13B(Supplementary Volume), 39–48 (2006)MathSciNetGoogle Scholar
  7. 7.
    Graef, J.R., Henderson, Wong, P.J.Y.: Three solutions of an nth order three-point focal type boundary value problem. Nonlinear Anal. 69, 3386–3404 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, San Diego (1988)MATHGoogle Scholar
  9. 9.
    Guezane-Lakoud, A., Frioui, A.: Nonlinear three-point boundary-value problem. Sarajevo J. Math. 8(20), 1–6 (2012)MathSciNetMATHGoogle Scholar
  10. 10.
    Guezane-Lakoud, A., Hamidane, N., Khaldi, R.: On a third order three-point boundary value problem, Int. J. Math. Sci. Art. ID 513189, 7pp (2012)Google Scholar
  11. 11.
    Guezane-Lakoud, A., Zenkoufi, L.: Existence of positive solutions for a third order multi-point boundary value problem. Appl. Math. 3, 1008–1013 (2013)CrossRefMATHGoogle Scholar
  12. 12.
    Le, X.Truong, Phan Fhung, D.: Existence of positive solutions for a multi-point four-order boundary value problem. Electron. J. Differ. Equ. 2011, 1–10 (2011)MathSciNetGoogle Scholar
  13. 13.
    Li, Y.: Positive solutions of fourth-order boundary value problems with two parameters. J. Math. Anal. Appl. 281, 477–484 (2003)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Li, Y.: On the existence of positive solutions for the bending elastic beam equations. Appl. Math. Comput. 189, 821–827 (2007)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Liu, B.: Positive solutions of fourth-order two-point boundary value problems. Appl. Math. Comput. 148, 407–420 (2004)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Ma, R.: Multiple positive solutions for semipositone fourth-order boundary value problem. Hirochima Math. J. 33, 217–227 (2003)MATHMathSciNetGoogle Scholar
  17. 17.
    Ma, R., Wang, H.: On the existence of positive solutions of fourth-order ordinary differential equations. Appl. Anal. 59, 225–231 (1995)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Yong-ping, Sun: Existence and multiplicity of positive solutions for an elastic beam equation. Appl. Math. J. Chin. Univ. 26(3), 253–264 (2011)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Wang, W., Shen, J.: Positive solutions to a multi-point boundary value problem with delay. Appl. Math. Comput. 188, 96–102 (2007)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Webb, J.R.L.: Positive solutions of some three-point boundary value problems via fixed point index theory. Nonlinear Anal. 47, 4319–4332 (2001)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Sun, Y., Zhu, C.: Existence of positive solutions for singular fourth-order three-point boundary value problems. Adv. Differ. Equ. 2013(51), 1–13 (2013)MathSciNetGoogle Scholar
  22. 22.
    Yang, Y.R.: Triple positive solution of a class of fourth-order two-point boundary value problems. Appl. Math. Lett. 23, 366–370 (2010)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Zhang, X., Lishan, L., Congxin, W.: Nontrivial solution of third-order nonlinear eigenvalue problems (II). Appl. Math. Comput. 176, 714–721 (2006)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Zhang, X., Lishan, L.: Nontrivial solution of third-order nonlinear eigenvalue problems (II). Appl. Math. Comput. 204, 508–512 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2015

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of SciencesUniversity Badji MokhtarAnnabaAlgeria
  2. 2.Department of Mathematics, Faculty of SciencesUniversity 8 may 1945 GuelmaGuelmaAlgeria

Personalised recommendations