Journal of Applied Mathematics and Computing

, Volume 44, Issue 1–2, pp 147–165 | Cite as

Ergodic and weighted pseudo-almost periodic solutions for partial functional differential equations in fading memory spaces

Original Research

Abstract

We use a new concept of weighted ergodic function based on the measure theory to investigate the existence and uniqueness of weighted pseudo almost periodic solution for a class of partial functional differential equations with infinite delay in fading memory spaces. We illustrate our theoretical results by studying some Lotka-Voltera reaction-diffusion systems with infinite delay.

Keywords

Partial functional differential equations Infinite delay Fading memory spaces Exponential dichotomy Ergodic functions Weighted pseudo almost periodic functions 

Mathematics Subject Classification

34K30 34K14 34K20 47D06 

References

  1. 1.
    Adimy, M., Ezzinbi, K.: Semi groupes intégrés et équations différentielles à retard en dimension infinie. C. R. Acad. Sci. Paris, Sér. I 323, 481–486 (1996) MATHMathSciNetGoogle Scholar
  2. 2.
    Adimy, M., Bouzahir, H., Ezzinbi, K.: Local existence and stability for some partial functional differential equations with infinite delay. Nonlinear Anal. 48, 323–348 (2002) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Adimy, M., Ezzinbi, K., Ouhinou, A.: Variation of constants formula and almost periodic solutions for some partial functional differential equations with infinite delay. J. Math. Anal. Appl. 317(2), 668–689 (2006) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Adimy, M., Ezzinbi, K., Ouhinou, A.: Behavior near hyperbolic stationary solutions for partial functional differential equations with infinite delay. Nonlinear Anal. 68, 2280–2302 (2008) CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Ait Dads, E., Arino, O.: Exponential dichotomy and existence of pseudo almost-periodic solutions of some differential equations. Nonlinear Anal. 27, 369–386 (1996) CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Ait Dads, E., Ezzinbi, K.: Pseudo almost periodic solutions of some delay differential equations. J. Math. Anal. Appl. 201, 840–850 (1996) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Ait Dads, E., Ezzinbi, K., Arino, O.: Pseudo almost periodic solutions for some differential equations in a Banach space. Nonlinear Anal. 28, 1141–1155 (1997) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Benkhalti, R., Bouzahir, H., Ezzinbi, K.: Existence of a periodic solution for some partial functional differential equations with infinite delay. J. Math. Anal. Appl. 256, 257–280 (2001) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Blot, J., Cieutat, P., Ezzinbi, K.: New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications. Applicable Analysis 1–34 (2011) Google Scholar
  10. 10.
    Corduneanu, C.: Almost Periodic Functions. Wiley, New York (1968). 2nd ed. Chelsea, New York, 1989 MATHGoogle Scholar
  11. 11.
    Diagana, T.: Pseudo almost periodic solutions to some differential equations. Nonlinear Anal. 60, 1277–1286 (2005) CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Diagana, T.: Weighted pseudo almost periodic functions and applications. C. R. Math. 343, 643–646 (2006) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Diagana, T.: Existence and uniqueness of pseudo almost periodic solutions to some classes of partial evolution equations. Nonlinear Anal. 66, 384–395 (2007) CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Diagana, T.: Pseudo Almost Periodic Functions in Banach Spaces. Nova Science, New York (2007) MATHGoogle Scholar
  15. 15.
    Diagana, T.: Weighted pseudo almost periodic solutions to some differential equations. Nonlinear Anal. 68, 2250–2260 (2008) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Diagana, T., Mahop, C.M., N’Guérékata, G.M.: Pseudo almost periodic solutions to some semilinear differential equations. Math. Comput. Model. 43, 89–96 (2006) CrossRefMATHGoogle Scholar
  17. 17.
    Diagana, T., Mahop, C.M., N’Guérékata, G.M., Toni, B.: Existence and uniqueness of pseudo almost periodic solutions to some classes of semilinear differential equations and applications. Nonlinear Anal. 64, 2442–2453 (2006) CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Diekmann, O., Gils, V., Lunel, V., Walther, H.O.: Delay equations. In: Functional, Complex, and Nonlinear Analysis. Applied Mathematical Sciences, vol. 110. Springer, New York (1995) Google Scholar
  19. 19.
    Ezzinbi, K., Fatajou, S., N’Guérékata, G.: Pseudo almost automorphic solutions for some partial functional differential equations with infinite delay. Appl. Anal. 87, 591–605 (2008) CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Fink, A.M.: Almost Periodic Differential Equations. Lecture Notes in Mathematics, vol. 377. Springer, New York (1974) MATHGoogle Scholar
  21. 21.
    Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Applied Mathematical Sciences, vol. 99. Springer, New York (1993) CrossRefMATHGoogle Scholar
  22. 22.
    Hino, Y., Murakami, S., Naito, T.: Functional Differential Equations with Infinite Delay. Lecture Notes in Mathematics, vol. 1473. Springer, Berlin (1991) MATHGoogle Scholar
  23. 23.
    Hino, Y., Murakami, S., Naito, T., Minh, N.V.: A variation of constants formula for abstract functional differential equations. J. Differ. Equ. 179(1), 336–355 (2002) CrossRefMATHGoogle Scholar
  24. 24.
    Hong, J., Obaya, R., Sanz, A.: Almost periodic type solutions of some differential equations with piecewise constant argument. Nonlinear Anal. 45, 661–688 (2001) CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, Berlin (1996) CrossRefMATHGoogle Scholar
  26. 26.
    Zhang, C.Y.: Integration of vector-valued pseudo almost periodic functions. Proc. Am. Math. Soc. 121(1), 167–174 (1994) CrossRefMATHGoogle Scholar
  27. 27.
    Zhang, C.Y.: Pseudo almost periodic solutions of some differential equations. J. Math. Anal. Appl. 181, 62–76 (1994) CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Zhang, C.Y.: Pseudo almost periodic solutions of some differential equations, II. J. Math. Anal. Appl. 192, 543–561 (1995) CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Zhang, L., Xu, Y.: Weighted pseudo almost periodic solutions for functional differential equations. Electron. J. Differ. Equ. 2007(146), 1–7 (2007) CrossRefGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2013

Authors and Affiliations

  • Mostafa Adimy
    • 1
    • 2
  • Khalil Ezzinbi
    • 3
  • Catherine Marquet
    • 4
  1. 1.Dracula teamINRIA Rhône-AlpesLyonFrance
  2. 2.Institut Camille Jordan, UMR 5208Université Lyon 1Villeurbanne cedexFrance
  3. 3.Département de Mathématiques, Faculté des Sciences SemlaliaUniversité Cadi AyyadMarrakeshMorocco
  4. 4.Laboratoire de Mathématiques Appliquées, CNRS UMR 5142Université de PauPauFrance

Personalised recommendations