Journal of Applied Mathematics and Computing

, Volume 43, Issue 1–2, pp 133–150 | Cite as

Minimum 2-tuple dominating set of permutation graphs

  • Sambhu Charan Barman
  • Sukumar Mondal
  • Madhumangal Pal
Original Research

Abstract

For a fixed positive integer k, a k-tuple dominating set of a graph G=(V,E) is a subset DV such that every vertex in V is dominated by at least k vertex in D. The k-tuple domination number γ×k(G) is the minimum size of a k-tuple dominating set of G. The special case when k=1 is the usual domination. The case when k=2 was called double domination or 2-tuple domination. A 2-tuple dominating set D2 is said to be minimal if there does not exist any D′⊂D2 such that D′ is a 2-tuple dominating set of G. A 2-tuple dominating set D2, denoted by γ×2(G), is said to be minimum, if it is minimal as well as it gives 2-tuple domination number. In this paper, we present an efficient algorithm to find a minimum 2-tuple dominating set on permutation graphs with n vertices which runs in O(n2) time.

Keywords

Design of algorithms Analysis of algorithms Domination k-Tuple domination 2-Tuple domination Permutation graphs 

Mathematics Subject Classification

05C78 

References

  1. 1.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti Spaccamela, A., Protasi, M.: Complexity and Approximation. Springer, Berlin (1999) CrossRefMATHGoogle Scholar
  2. 2.
    Awerbuch, B., Peleg, D.: Sparse partitions (extended abstract). In: 31st Annual Symposium on Foundations of Computer Science, pp. 503–513 (1990) CrossRefGoogle Scholar
  3. 3.
    Benson, D.A., Boguski, M.S., Lipman, D.J., Ostell, J., Ouellette, B.F., Rapp, B.A., Wheeler, D.L.: Nucleic acids research. GenBank 27(1), 12–17 (1999) Google Scholar
  4. 4.
    Berchtold, S., Keim, D., Kriegel, H.-P.: Transitive orientation of graphs and identification of permutation graphs. In: Proceedings of the 22nd Conference on Very Large Databases, pp. 28–39 (1996) Google Scholar
  5. 5.
    Berchtold, S., Bohm, C., Kriegel, H.P.: The pyramid-technique: towards breaking the curse of dimensionality. In: Proceedings of the SIGMOD Conference, pp. 142–153 (1998) Google Scholar
  6. 6.
    Berger, E.: Dynamic monopolies of constant size. Technical report, Los Alamos National Laboratories (1999) Google Scholar
  7. 7.
    Chang, G.J.: Algorithmic aspect of domination in graphs. In: Du, D.-Z., Paradolas, P.M. (eds.) Handbook of Combinatorial Optimization, vol. 3, pp. 339–405 (1998) Google Scholar
  8. 8.
    Chao, H.S., Hsu, F.R., Lee, R.C.T.: An optimal algorithm for finding the minimum cardinality dominating set on permutation graphs. Discrete Appl. Math. 102, 159–173 (2000) MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cockayne, E., Dawes, R., Hedetniemi, S.: Total domination in graphs. Networks 10, 211–219 (1980) MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    De Jaenisch, C.F.: Trait des Applications de l’Analyse Mathematique au Jeu des Echecs. Petrograd (1862) Google Scholar
  11. 11.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980) MATHGoogle Scholar
  12. 12.
    Harary, F., Haynes, T.W.: Double domination in graphs. Ars Comb. 55, 201–213 (2000) MathSciNetMATHGoogle Scholar
  13. 13.
    Haynes, T.W., Slater, P.J.: Paired-domination in graphs. Networks 32, 199–206 (1998) MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs: Advanced Topics. Dekker, New York (1998) MATHGoogle Scholar
  15. 15.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs: Selected Topics. Dekker, New York (1998) Google Scholar
  16. 16.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs: The Theory. Dekker, New York (1998) MATHGoogle Scholar
  17. 17.
    Haynes, T.W., Mynhardt, C.M., van der Merwe, L.C.: Criticality index of total domination. Congr. Numer. 131, 67–73 (1998) MathSciNetMATHGoogle Scholar
  18. 18.
    Haynes, T.W., Mynhardt, C.M., van der Merwe, L.C.: Total domination edge critical graphs. Util. Math. 54, 229–240 (1998) MathSciNetMATHGoogle Scholar
  19. 19.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Dekker, New York (1998) MATHGoogle Scholar
  20. 20.
    Haynes, T.W., Mynhardt, C.M., van der Merwe, L.C.: Total domination edge critical graphs with maximum diameter. Discuss. Math., Graph Theory 21, 187–205 (2001) MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Liao, C.S., Chang, G.J.: Algorithmic aspect of k-tuple domination in graphs. Taiwan. J. Math. 6, 415–420 (2002) MathSciNetMATHGoogle Scholar
  22. 22.
    Liao, C.S., Chang, G.J.: k-Tuple domination in graphs. Inf. Process. Lett. 87, 45–50 (2003) MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Lu, C.L., Ko, M.-T., Tang, C.Y.: Perfect edge domination and efficient edge domination in graphs. Discrete Appl. Math. 119, 227–250 (2002) MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Muller, J.H., Spinrad, J.: Incremental modular decomposition. J. ACM 36, 1–19 (1989) MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Pnueli, A., Lempel, A., Even, S.: Transitive orientation of graphs and identification of permutation graphs. Can. J. Math. 23, 160–175 (1971) MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Pramanik, T., Mondal, S., Pal, M.: Minimum 2-tuple dominating set of an interval graphs. Int. J. Comb. 2011, 1–14 (2011) MathSciNetGoogle Scholar
  27. 27.
    Qiao, H., Kang, L., Gardei, M., Du, D.-Z.: Paired-domination of trees. J. Glob. Optim. 25, 43–54 (2003) CrossRefMATHGoogle Scholar
  28. 28.
    Shan, E., Dong, Y.: The k-tuple twin domination in generalized de Bruijn and Kautz networks. Comput. Math. Appl. 63(1), 222–227 (2012) MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Sumner, D.P., Blitch, P.: Domination critical graphs. J. Comb. Theory, Ser. B 34, 65–76 (1983) MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Yannakakis, M., Gavril, F.: Edge domination sets in graphs. SIAM J. Appl. Math. B 38, 364–372 (1980) MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2013

Authors and Affiliations

  • Sambhu Charan Barman
    • 1
  • Sukumar Mondal
    • 2
  • Madhumangal Pal
    • 1
  1. 1.Department of Applied Mathematics with Oceanology and Computer ProgrammingVidyasagar UniversityMidnaporeIndia
  2. 2.Department of MathematicsRaja N.L. Khan Women’s CollegeMidnaporeIndia

Personalised recommendations