A characteristic difference method for the variable-order fractional advection-diffusion equation

  • S. Shen
  • F. Liu
  • V. Anh
  • I. Turner
  • J. Chen
Computational mathematics


In this paper, we consider a variable-order fractional advection-diffusion equation with a nonlinear source term (VOFADE-NST) on a finite domain. Combining the characteristic method and the finite difference method, a characteristic finite difference method for solving the VOFADE-NST is presented. Its stability and convergence are analyzed. This new method is shown to be more efficient and superior to the standard finite difference method. Numerical experiments are carried out and the results demonstrate the effectiveness of theoretical analysis.


Fractional advection-diffusion equation Characteristic finite difference method Stability and convergence Variable-order fractional order derivative 

Mathematics Subject Classification

26A33 65M12 65M06 



The work was supported by the National Natural Science Foundation of China grant 11001090 and 11101344, the Natural Science Foundation of Huaqiao University grant 08BS507, the Australian Research Council grant DP120103770, and the Natural Science Foundation of Fujian province grant 2010J05009.


  1. 1.
    Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000) CrossRefGoogle Scholar
  2. 2.
    Chaves, A.: Fractional diffusion equation to describe Lévy flights. Phys. Lett. A 239, 13–16 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chen, C.-M., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 32, 1740–1760 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Coimbra, C.F.M.: Mechanics with variable-order differential operators. Ann. Phys. 12, 692–703 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Douglas, J., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Ervin, V.J., Roop, J.P.: Variational solution of fractional advection dispersion equations on bounded domains in R d. Numer. Methods Partial Differ. Equ. 23, 256–281 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Fujita, Y.: Integrodifferential equation which interpolates the heat equation and the wave equation. Osaka J. Math. 27, 309–321 (1990) MathSciNetzbMATHGoogle Scholar
  8. 8.
    Golbabai, A., Sayevand, K.: On generalized fractional flux advection-dispersion equation and Caputo derivative. Int. J. Math. Comput. Sci. 2, 425–430 (2011) Google Scholar
  9. 9.
    Gorenflo, R., Iskenderov, A., Luchko, Yu.: Mapping between solutions of fractional diffusion-wave equations. Fract. Calc. Appl. Math. 3(1), 75–86 (2000) MathSciNetzbMATHGoogle Scholar
  10. 10.
    Jacob, N., Leopold, H.-G.: Pseudo differential operators with variable order of differentiation generating Feller semigroup. Integral Equ. Oper. Theory 17, 544–553 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kikuchi, K., Negoro, A.: On Markov processes generated by pseudodifferential operator of variable order. Osaka J. Math. 34, 319–335 (1997) MathSciNetzbMATHGoogle Scholar
  12. 12.
    Komatsu, T.: On stable-like processes. In: Watanabe, S., Fukushima, M., Prohorov, Y.V., Shiryaev, A.N. (eds.) 7th Japan-Russian Symposium on Probability Theory and Mathematical Statistics, pp. 210–219. World Scientific, Singapore (1996) Google Scholar
  13. 13.
    Leopold, H.G.: Embedding of function spaces of variable order of differentiation. Czechoslov. Math. J. 49, 633–644 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Lin, R., Liu, F., Anh, V., Turner, I.: Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 212, 435–445 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Lorenzo, C.F., Hartley, T.T.: Initialization, conceptualization, and application in the generalized fractional calculus. NASA Technical Publication 98-208415, NASA, Lewis Research Center (1998) Google Scholar
  17. 17.
    Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. de Gruyter Studies in Mathematics, vol. 43. de Gruyter, Berlin (2012) zbMATHGoogle Scholar
  19. 19.
    Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) zbMATHGoogle Scholar
  22. 22.
    Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica A 314, 749–755 (2002) zbMATHCrossRefGoogle Scholar
  23. 23.
    Roop, J.P.: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2. J. Comput. Appl. Math. 193, 243–268 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Ruiz-Medina, M.D., Anh, V.V., Angulo, J.M.: Fractional generalized random fields of variable order. Stoch. Anal. Appl. 22, 775–799 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Samko, S.G.: Fractional integration and differentiation of variable order. Anal. Math. 21, 213–236 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transforms Spec. Funct. 1, 277–300 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Schumer, R., Benson, D.A., Meerschaert, M.M., Wheatcraft, S.W.: Eulerian derivation of the fractional advection-dispersion equation. J. Contam. Hydrol. 48, 69–88 (2001) CrossRefGoogle Scholar
  28. 28.
    Simth, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Clarendon, Oxford (1985) Google Scholar
  29. 29.
    Soon, C.M., Coimbra, F.M., Kobayashi, M.H.: The variable viscoelasticity oscillator. Ann. Phys. 14, 378–389 (2005) zbMATHCrossRefGoogle Scholar
  30. 30.
    Sousa, E.: Finite difference approximations for a fractional advection diffusion problem. J. Comput. Phys. 228, 4038–4054 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Su, L., Wang, W., Wang, H.: A characteristic difference method for the transient fractional convection-diffusion equations. Appl. Numer. Math. 61, 946–960 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Physica A 388, 4586–4592 (2009) CrossRefGoogle Scholar
  33. 33.
    Wang, K., Wang, H.: A fast characteristic finite difference method for fractional advection-diffusion equations. Adv. Water Resour. 34(7), 810–816 (2011) CrossRefGoogle Scholar
  34. 34.
    Yong, Z., Benson, D.A., Meerschaert, M.M., Scheffler, H.-P.: On using random walks to solve the space-fractional advection-dispersion equations. J. Stat. Phys. 123, 89–110 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Zhou, L., Selim, H.M.: Application of the fractional advection-dispersion equation in porous media. Soil Sci. Soc. Am. J. 67, 1079–1084 (2003) CrossRefGoogle Scholar
  36. 36.
    Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2013

Authors and Affiliations

  1. 1.School of Mathematical SciencesHuaqiao UniversityQuanzhouChina
  2. 2.School of Mathematical SciencesQueensland University of TechnologyBrisbaneAustralia
  3. 3.School of SciencesJimei UniversityXiamenChina

Personalised recommendations