Advertisement

Journal of Applied Mathematics and Computing

, Volume 40, Issue 1–2, pp 195–207 | Cite as

Remarks on the concepts of t-designs

  • Eiichi Bannai
  • Etsuko Bannai
Discrete and combinatorial mathematic

Abstract

We define the concept of t-design for real hyperbolic space ℍ n , as an analogue of the definition of Euclidean t-design. Then, we discuss the similarities between the concept of t-design on ℍ n or ℝ n , and the concept of relative t-design defined for association schemes by Delsarte: Pairs of vectors in the space of an association scheme (1977).

Keywords

Real hyperbolic space t-design Spherical design Euclidean design Relative t-design 

Mathematics Subject Classification (2010)

05E99 05E30 05B99 51M04 51M09 

Notes

Acknowledgements

This work was done while the authors are visiting Hebei Normal University for 3 months, from Sept. to Dec. 2010. The authors thank Professor Suogang Gao and Hebei Normal University for their hospitalities. The authors thank the referees for valuable comments.

References

  1. 1.
    Bannai, E., Bannai, E.: Algebraic Combinatorics on Spheres. Springer, Tokyo (1999) (in Japanese) Google Scholar
  2. 2.
    Bannai, E., Bannai, E.: A survey on spherical designs and algebraic combinatorics on spheres. Eur. J. Comb. 30, 1392–1425 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bannai, E., Blokhuis, A., Delsarte, P., Seidel, J.J.: An addition formula for hyperbolic space. J. Comb. Theory, Ser. A 36, 332–341 (1984) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Box, G.E.P., Hunter, J.S.: Multi-factor experimental designs for exploring response surfaces. Ann. Math. Stat. 28, 195–241 (1957) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Cameron, P.J.: Goethals, J.M., Seidel, J.J.: The Krein condition, spherical designs, Norton algebras and permutation groups. Indag. Math. 40(2), 196–206 (1978) MathSciNetGoogle Scholar
  6. 6.
    Delsarte, P.: An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl. 10 (1973) Google Scholar
  7. 7.
    Delsarte, P.: Pairs of vectors in the space of an association scheme. Philips Res. Rep. 32, 373–411 (1977) MathSciNetGoogle Scholar
  8. 8.
    Delsarte, P., Goethals, J.M., Seidel, J.J.: Spherical codes and designs. Geom. Dedic. 6, 363–388 (1977) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Delsarte, P., Seidel, J.J.: Fisher type inequalities for Euclidean t-designs. Linear Algebra Appl. 114–115, 213–230 (1989) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Cambridge (2003) Google Scholar
  11. 11.
    Helgason, S.: Differential Geometry and Symmetric Spaces. Academic Press, New York (1962) zbMATHGoogle Scholar
  12. 12.
    Helgason, S.: Differential Geometry, Lie groups and Symmetric Spaces. Academic Press, New York (1978) zbMATHGoogle Scholar
  13. 13.
    Jaeger, F.: On spin models, triply regular association schemes, and duality. J. Algebr. Comb. 4(2), 103–144 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Möller, H.M.: Lower bounds for the number of nodes in cubature formulae. In: Numerische Integration (Tagung, Math. Forschungsinst., Oberwolfach (1978)). Internat. Ser. Numer. Math., vol. 45, pp. 221–230. Birkhäuser, Basel (1979) Google Scholar
  15. 15.
    Neumaier, A., Seidel, J.J.: Discrete measures for spherical designs, eutactic stars and lattices. Indag. Math. 50, 321–334 (1988) MathSciNetzbMATHGoogle Scholar
  16. 16.
    Sobolev, S.L.: Introduction to the Theory of Cubature Formulae. Nauka, Moscow (1974). (in Russian) Google Scholar
  17. 17.
    Sobolev, S.L., Vaskevich, V.L.: The Theory of Cubature Formulas (Mathematics and Its Applications). Kluwer Academic, Dordrecht (1997) Google Scholar
  18. 18.
    Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs (1971) zbMATHGoogle Scholar
  19. 19.
    Terwilliger, P.: The subconstituent algebra of an association scheme I. J. Algebr. Comb. 1, 363–388 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Wolf, J.A.: Spaces of Constant Curvature, 5th edn. University of California, Berkeley (1984) Google Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2012

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Itoshimashi, FukuokaJapan

Personalised recommendations