Journal of Applied Mathematics and Computing

, Volume 34, Issue 1–2, pp 393–405 | Cite as

Existence of multiple positive solutions for nth-order p-Laplacian m-point singular boundary value problems

Article

Abstract

In this paper, by using fixed point theorem, we prove the existence of multiple positive solutions for a class of nth-order p-Laplacian m-point singular boundary value problem. The interesting point is that the nonlinear term f explicitly involves the each-order derivative of variable u(t).

Keywords

p-Laplacian operator nth-order m-point singular boundary value problem Positive solutions Fixed points 

Mathematics Subject Classification (2000)

34B10 34B16 34B18 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feng, H., Ge, W.: Triple symmetric positive solutions for multipoint boundary-value problem with one-dimensional p-Laplacian. Math. Comput. Modell. 47, 186–195 (2008) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Feng, H., Ge, W.: Existence of three positive solutions for m-point boundary-value problems with one-dimensional p-Laplacian. Nonlinear Anal. 68, 2017–2026 (2008) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Fenga, H., Ge, W., Jiang, M.: Multiple positive solutions for m-point boundary-value problems with a one-dimensional p-Laplacian. Nonlinear Anal. 68, 2269–2279 (2008) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Feng, W., Webb, J.R.L.: Solvability of m-point boundary value problem with nonlinear growth. J. Math. Appl. 212, 467–480 (1997) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Graef, J.R., Yang, B.: Positive solutions to a multi-point higher order boundary value problem. J. Math. Anal. Appl. 316, 409–421 (2006) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Guo, Y., Ji, Y., Liu, X.: Multiple positive solutions for some multi-point boundary value problems with p-Laplacian. J. Comput. Appl. Math. 216, 144–156 (2008) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gupta, C.P.: A generalized multi-point boundary value problem for second order ordinary differential equation. Appl. Math. Comput. 89, 138–146 (1998) CrossRefGoogle Scholar
  8. 8.
    Jiang, W.: Multiple positive solutions for nth-order m-point boundary value problems with all derivatives. Nonlinear Anal. 68, 1064–1072 (2008) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ma, R., O’Regan, D.: Solvability of singular second order m-point boundary value problems. J. Math. Appl. 301, 124–134 (2005) MATHMathSciNetGoogle Scholar
  10. 10.
    Pang, C., Dong, W., Wei, Z.: Green’s function and positive solutions of nth order m-point boundary value problem. Appl. Math. Comput. 182, 1231–1239 (2006) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    O’Regan, D.: Theory of Singular Boundary Value Problems. World Scientific, Singapore (1994) MATHGoogle Scholar
  12. 12.
    O’Regan, D.: Singular Dirichlet boundary value problems—I. Super-linear and non-resonance case. Nonlinear Anal. TMA 29(2), 221–245 (1997) MATHCrossRefGoogle Scholar
  13. 13.
    Su, H.: Positive solutions for n-order m-point p-Laplacian operator singular boundary value problems. Appl. Math. Comput. 199, 122–132 (2008) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Sun, B., Qu, Y., Ge, W.G.: Existence and iteration of positive solutions for a multipoint one-dimensional p-Laplacian boundary value problem. Appl. Math. Comput. 197, 389–398 (2008) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Taliaferro, S.D.: A nonlinear singular boundary value problem. Nonlinear Anal. TMA 3, 897–904 (1979) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Wei, Z., Pang, C.: Positive solutions of non-resonant singular boundary value problem of second order differential equations. Nagoya Math. J. 162, 127–148 (2001) MATHMathSciNetGoogle Scholar
  17. 17.
    Wei, Z.: A class of fourth order singular boundary value problems. Appl. Math. Comput. V 153(3), 865–884 (2004) MATHCrossRefGoogle Scholar
  18. 18.
    Zhang, Y.: Positive solutions of singular sub-linear Emden–Fowler boundary value problems. J. Math. Anal. Appl. 185, 215–222 (1994) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Zhang, G., Sun, J.: Positive solutions of m-point boundary value problem. J. Math. Anal. Appl. 291, 406–418 (2004) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Zhu, Y., Wang, K.: On the existence of solutions of p-Laplacian m-point boundary value problem at resonance. Nonlinear Anal. 70, 1557–1564 (2009) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Guo, D.J.: Nonlinear Functional Analysis. Shandong Sci. and Tech. Press, Jinan (1985) (in Chinese) Google Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2009

Authors and Affiliations

  1. 1.Xuzhou Higher Normal SchoolXuzhouPeople’s Republic of China
  2. 2.Department of MathematicsXuzhou Normal UniversityXuzhouPeople’s Republic of China

Personalised recommendations