Theta functions on tube domains

  • Josef F. Dorfmeister
  • Sebastian WalcherEmail author


We discuss generalizations of classical theta series, requiring only some basic properties of the classical setting. As it turns out, the existence of a generalized theta transformation formula implies that the series is defined over a quasi-symmetric Siegel domain. In particular the exceptional symmetric tube domain does not admit a theta function.


Theta series Siegel domain Convex cone Jordan algebra 

Mathematics Subject Classification

11F27 32M15 17C50 32N05 


  1. 1.
    Bartle, R.G.: The Elements of Integration. Wiley, New York (1966)zbMATHGoogle Scholar
  2. 2.
    Dieckmann, C.: Jacobiformen über den Cayley-Zahlen. Doctoral dissertation, RWTH Aachen (2014).
  3. 3.
    Dieckmann, C., Krieg, A.: The restriction of octonionic theta constants to the quaternionic half-space. In: B. Heim (ed.) et al., Automorphic forms. Springer Proceedings in Mathematics & Statistics 115, 163-171 (2014)Google Scholar
  4. 4.
    Dorfmeister, J.: Theta functions for the special, formally real Jordan algebras. Invent. Math. 44, 103–108 (1978)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dorfmeister, J.: Homogeneous Siegel domains. Nagoya Math. J. 86, 39–83 (1982)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dorfmeister, J.: Homogene Siegel-Gebiete. Habilitationsschrift. Universität Münster, Münster (1978)Google Scholar
  7. 7.
    Dorfmeister, J.: Quasisymmetric Siegel domains and the automorphisms of homogeneous Siegel domains. Am. J. Math. 102, 537–563 (1980)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Helgason, S.: Differential Geometry. Lie Groups and Symmetric Spaces. Academic Press, New York (1978)zbMATHGoogle Scholar
  9. 9.
    Kim, H.: Exceptional modular form of weight 4 on an exceptional domain contained in \(\mathbb{C}^{27}\). Rev. Mat. Iberoam. 9, 139–200 (1993)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Koecher, M.: The Minnesota notes on Jordan algebras and applications. Springer LNM 1710 (1999)Google Scholar
  11. 11.
    Krieg, A.: Modular forms over half-spaces of quaternions. Springer LNM 1143 (1985)Google Scholar
  12. 12.
    Krieg, A.: The singular modular forms on the 27-dimensional exceptional domain. Manuscr. Math. 92, 361–367 (1997)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mumford, D.: Tata Lectures on Theta I. Birkhäuser, Boston (1983)CrossRefGoogle Scholar
  14. 14.
    Resnikoff, H.L.: Theta functions for Jordan algebras. Invent. Math. 31, 87–104 (1975)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rothaus, O.S.: Automorphisms of Siegel domains. Trans. AMS 162, 351–382 (1971)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Satake, I.: On classification of quasi-symmetric Siegel domains. Nagoya Math. J. 62, 1–12 (1976)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Stein, E.M., Weiss, G.L.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Univ. Press, Princeton (1971)zbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Fakultät für MathematikTU MünchenGarchingGermany
  2. 2.Mathematik ARWTH AachenAachenGermany

Personalised recommendations