Advertisement

The combinatorial category of Andersen, Jantzen and Soergel and filtered moment graph sheaves

  • Peter FiebigEmail author
  • Martina Lanini
Article
  • 165 Downloads

Abstract

We give an overview on the series of articles (Fiebig and Lanini, Filtered moment graph sheaves, arXiv:1508.05579, 2015, Fiebig and Lanini, Periodic structures on affine moment graphs I: dualities and translation functors, arXiv:1504.01699, 2015, Fiebig and Lanini, Periodic structures on affine moment graphs II: multiplicities and modular representations (in preparation)) that aims at introducing a new approach towards the “combinatorial” category introduced by Andersen, Jantzen and Soergel in their work on Lusztig’s conjecture on the irreducible highest weight characters of modular algebraic groups.

Keywords

Modular representation theory Lusztig’s conjecture Andersen-Jantzen-Soergel category 

Mathematics Subject Classification

20C20 20G05 

References

  1. 1.
    Andersen, H.H., Jantzen, J.C., Soergel, W.: Representations of quantum groups at a \(p\)th root of unity and of semisimple groups in characteristic \(p\): independence of \(p\). Astérisque 220, 321 (1994)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Braden, T., MacPherson, R.: From moment graphs to intersection cohomology. Math. Ann. 321(3), 533–551 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fiebig, P., Lanini, M: Filtered moment graph sheaves, preprint 2015, arXiv:1508.05579
  4. 4.
    Fiebig, P., Lanini, M.: Periodic structures on affine moment graphs I: dualities and translation functors, preprint 2015, arXiv:1504.01699
  5. 5.
    Fiebig, P., Lanini, M.: Periodic structures on affine moment graphs II: multiplicities and modular representations (in preparation)Google Scholar
  6. 6.
    Fiebig, P.: Sheaves on moment graphs and a localization of Verma flags. Adv. Math. 217, 683–712 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fiebig, P.: Lusztig’s conjecture as a moment graph problem. Bull. Lond. Math. Soc. 42(6), 957–972 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jantzen, J.C.: Über das Dekompositionsverhalten gewisser modularer Darstellungen halbeinfacher Gruppen und ihrer Lie-Algebren. J. Algebra 49, 441–469 (1977)Google Scholar
  9. 9.
    Lusztig, G.: Some problems in the representation theory of finite Chevalley groups. The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math., vol. 37, Am. Math. Soc., Providence, R.I., 1980, pp 313–317Google Scholar
  10. 10.
    Lusztig, G.: Hecke algebras and Jantzen’s generic decomposition patterns. Adv. Math. 37(2), 121–164 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Soergel, W.: Kazhdan-Lusztig-Polynome und eine Kombinatorik für Kipp-Moduln. Represent. Theory 1, 37–68 (1997). (electronic)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Williamson, G.: Schubert calculus and torsion explosion. J. Am. Math. Soc. arXiv:1309.5055 (to appear)

Copyright information

© Mathematisches Seminar der Universität Hamburg and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department MathematikFAU Erlangen–NürnbergErlangenGermany
  2. 2.School of MathematicsUniversity of EdinburghEdinburghUK

Personalised recommendations