On Weierstraß semigroups at one and two points and their corresponding Poincaré series

Article
  • 56 Downloads

Abstract

The aim of this paper is to introduce and investigate the Poincaré series associated with the Weierstraß semigroup of one and two rational points at a (not necessarily irreducible) non-singular projective algebraic curve defined over a finite field, as well as to describe their functional equations in the case of an affine complete intersection.

Keywords

Weierstrass semigroup Discrete Manis valuation Poincaré series 

Mathematics Subject Classification (2000)

14H55 13D40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abhyankar, S.S.: Lectures on Expansion Techniques in Algebraic Geometry. Tata Institute of Fundamental Research, Bombay (1977) MATHGoogle Scholar
  2. 2.
    Brill, A., Noether, M.: Über die algebraischen Functionen und ihre Anwendung in der Geometrie. Math. Ann. 7, 269–310 (1874) CrossRefGoogle Scholar
  3. 3.
    Campillo, A., Delgado, F., Gusein-Zade, S.M.: On the Monodromy at Infinity of a Plane Curve and the Poincaré Series of Its Coordinate Ring. Volume in honour to Pontryagin. Contemporary Math. and Its Applications (1998). Moscow. English version: J. Math. Sci. (N.Y.), 105(2), 1839–1842 (2001) Google Scholar
  4. 4.
    Carvalho, C., Torres, F.: On Goppa codes and Weierstrass gaps at several points. Des. Codes Cryptogr. 35(2), 211–225 (2005) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Del Centina, A.: Weierstrass points and their impact in the study of algebraic curves: a historical account from the “Lückensatz” to the 1970s. Ann. Univ. Ferrara 54, 37–59 (2008) MATHCrossRefGoogle Scholar
  6. 6.
    Delgado, F.: Gorenstein curves and symmetry of the semigroup of values. Manuscr. Math. 61, 285–296 (1988) MATHCrossRefGoogle Scholar
  7. 7.
    Delgado, F.: The symmetry of the Weierstrass generalized semigroups and affine embeddings. Proc. Am. Math. Soc. 108(3), 627–631 (1990) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Herzog, J., Kunz, E.: Die Wertehalbgruppe eines lokalen Rings der Dimension 1. Ber. Heidelberger Akad. Wiss. 1971(II), 27–67 (1971) Google Scholar
  9. 9.
    Hurwitz, A.: Über algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann. 41, 403–442 (1893) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kiyek, K., Vicente, J.L.: Resolution of Curve and Surface Singularities in Characteristic Zero. Kluwer Academic, Dordrecht (2004) MATHGoogle Scholar
  11. 11.
    Liu, Q.: Algebraic Geometry and Arithmetic Curves. Oxford University Press, Oxford (2002) MATHGoogle Scholar
  12. 12.
    Moyano-Fernández, J.J., Zúñiga Galindo, W.A.: Motivic zeta functions for curve singularities. Nagoya Math. J. 198, 47–75 (2010) MathSciNetMATHGoogle Scholar
  13. 13.
    Oort, F.: Reducible and Multiple Algebraic Curves. Van Gorcum & Comp. N.V., Assen (1961) MATHGoogle Scholar
  14. 14.
    Quillen, D.: Projective modules over polynomial rings. Invent. Math. 36, 167–171 (1976) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Rosales, J.C., García-Sánchez, P.A.: Numerical Semigroups. Developments in Mathematics, vol. 20. Springer, Berlin (2010) Google Scholar
  16. 16.
    Sathaye, A.: On planar curves. Am. J. Math. 99, 1105–1135 (1977) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Serre, J.P.: Sur les modules projectivs. Séminaire Dubreil-Pisot 1 (1960/61) Google Scholar
  18. 18.
    Stöhr, K.O.: Local and global zeta-functions of singular algebraic curves. J. Number Theory 71, 172–202 (1998) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Weierstraß, K.: Mathematische Werke. Berlin (1894–1927). Reprinted by G. Olms, Hildesheim (1967) Google Scholar

Copyright information

© Mathematisches Seminar der Universität Hamburg and Springer 2011

Authors and Affiliations

  1. 1.Institut für MathematikUniversität OsnabrückOsnabrückGermany

Personalised recommendations