Fourier-Jacobi expansion and the Ikeda lift



In this article, we consider a Fourier-Jacobi expansion of Siegel modular forms generated by the Ikeda lift. There are two purposes of this article: first, to give an expression of L-function of certain Siegel modular forms of half-integral weight of odd degree; and secondly, to give a relation among Fourier-Jacobi coefficients of Siegel modular forms generated by the Ikeda lift.


Siegel modular forms Jacobi forms Maass relation 

Mathematics Subject Classification (2000)

11F46 11F37 11F50 


  1. 1.
    Arakawa, T.: Jacobi Eisenstein series and a basis problem for Jacobi forms. Comment. Math. Univ. St. Pauli 43(2), 181–216 (1994) MathSciNetMATHGoogle Scholar
  2. 2.
    Boecherer, S.: Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen. Math. Z. 183, 21–46 (1983) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Breulmann, S., Kuss, M.: On a conjecture of Duke-Imamoḡlu. Proc. Am. Math. Soc. 128, 1595–1604 (2000) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Cohen, H.: Sums involving the values at negative integers of L-functions of quadratic characters. Math. Ann. 217, 171–185 (1975) CrossRefGoogle Scholar
  5. 5.
    Eichler, M., Zagier, D.: Theory of Jacobi Forms. Progress in Math., vol. 55. Birkhäuser, Boston (1985) MATHGoogle Scholar
  6. 6.
    Gritsenko, V.A.: The action on modular operators on the Fourier-Jacobi coefficients of modular forms. Math. USSR Sb. 47, 237–268 (1984) MATHCrossRefGoogle Scholar
  7. 7.
    Hayashida, S.: Zeta function and Zharkovskaya’s theorem on half integral weights Siegel modular forms. Acta Arith. 108(4), 391–399 (2003) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Ibukiyama, T.: On Jacobi forms and Siegel modular forms of half integral weights. Comment. Math. Univ. St. Pauli 41(2), 109–124 (1992) MathSciNetMATHGoogle Scholar
  9. 9.
    Ikeda, T.: On the lifting of elliptic cusp forms to Siegel cusp forms of degree 2n. Ann. Math. 154(3), 641–681 (2001) MATHCrossRefGoogle Scholar
  10. 10.
    Kawamura, H.: Ikeda’s conjecture on the Petersson inner product of the Ikeda lifting. Ph.D Thesis at Hokkaido Univ. Mar. (2008) Google Scholar
  11. 11.
    Kohnen, W.: Modular forms of half integral weight on Γ0(4). Math. Ann. 248, 249–266 (1980) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Kohnen, W.: Lifting modular forms of half-integral weight to Siegel modular forms of even genus. Math. Ann. 322, 787–809 (2002) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Kohnen, W., Kojima, H.: A Maass space in higher genus. Compos. Math. 141(2), 313–322 (2005) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Mizumoto, S.: Nearly holomorphic Eisenstein liftings. Abh. Math. Sem. Univ. Hambg. 67, 173–194 (1997) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Murase, A.: L-functions attached to Jacobi forms of degree n, Part I. The basic identity. J. Reine Angew. Math. 401, 122–156 (1989) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Oh, Y.Y., Koo, J.K., Kim, M.H.: Hecke operators and the Siegel operator. J. Korean Math. Soc. 26(2), 323–334 (1989) MathSciNetMATHGoogle Scholar
  17. 17.
    Shimura, G.: On modular forms of half integral weight. Ann. Math. 97, 440–481 (1973) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Skoruppa, N.-P., Zagier, D.: A trace formula for Jacobi forms. J. Reine Angew. Math. 393, 168–198 (1989) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Yamazaki, T.: Jacobi forms and a Maass relation for Eisenstein series. J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 33, 295–310 (1986) MathSciNetMATHGoogle Scholar
  20. 20.
    Yamazaki, T.: Jacobi forms and a Maass relation for Eisenstein series II. J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 36, 373–386 (1989) MathSciNetMATHGoogle Scholar
  21. 21.
    Zhuravlev, V.G.: Hecke rings for a covering of the symplectic group. Sb. Math. 121 (163)(3), 381–402 (1983) MathSciNetGoogle Scholar
  22. 22.
    Zhuravlev, V.G.: Euler expansions of theta transforms of Siegel modular forms of half-integral weight and their analytic properties. Sb. Math. 123(165), 174–194 (1984) MathSciNetGoogle Scholar
  23. 23.
    Ziegler, C.: Jacobi forms of higher degree. Abh. Math. Sem. Univ. Hambg. 59, 191–224 (1989) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Mathematisches Seminar der Universität Hamburg and Springer 2011

Authors and Affiliations

  1. 1.International College, and Department of MathematicsOsaka UniversityOsakaJapan

Personalised recommendations