Localisation and colocalisation of KK-theory

Article

Abstract

The localisation of an R-linear triangulated category \(\mathcal{T}\) at S −1 R for a multiplicatively closed subset S is again triangulated, and related to the original category by a long exact sequence involving a version of \(\mathcal{T}\) with coefficients in S −1 R/R. We examine these theories and, under some assumptions, write the latter as an inductive limit of \(\mathcal{T}\) with torsion coefficients. Our main application is the case where \(\mathcal{T}\) is equivariant bivariant K-theory and R the ring of integers.

Keywords

Localisation Triangulated category KK-theory 

Mathematics Subject Classification (2000)

19K99 19K35 19D55 

References

  1. 1.
    Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison–Wesley, Reading (1969) MATHGoogle Scholar
  2. 2.
    Balmer, P.: Spectra, spectra, spectra (2009). Preprint, available at http://www.math.ucla.edu/balmer/research/Pubfile/SSS.pdf
  3. 3.
    Blackadar, B.: Rational C -algebras and nonstable K-theory. In: Proceedings of the Seventh Great Plains Operator Theory Seminar, Lawrence, KS, 1987, pp. 285–316 (1990). doi: 10.1216/rmjm/1181073108 Google Scholar
  4. 4.
    Blackadar, B.: K-theory for Operator Algebras. Mathematical Sciences Research Institute Publications, vol. 5. Cambridge University Press, Cambridge (1998) MATHGoogle Scholar
  5. 5.
    Browder, W.: Algebraic K-theory with coefficients ℤ/p. In: Geometric Applications of Homotopy Theory IL, Proc. Conf., Evanston, IL, 1977. Lecture Notes in Math., vol. 657, pp. 40–84. Springer, Berlin (1978) CrossRefGoogle Scholar
  6. 6.
    Cuntz, J., Meyer, R., Rosenberg, J.M.: Topological and Bivariant K-Theory. Oberwolfach Seminars, vol. 36. Birkhäuser, Basel (2007) MATHGoogle Scholar
  7. 7.
    Dell’Ambrogio, I.: Tensor triangular geometry and KK-theory. J. Homotopy Relat. Struct. 5(1), 319–358 (2010) Google Scholar
  8. 8.
    Gabriel, P., Zisman, M.: Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 35. Springer, New York (1967) MATHGoogle Scholar
  9. 9.
    Inassaridze, H., Kandelaki, T., Meyer, R.: Localisation and colocalisation of triangulated categories at thick subcategories (2009). arXiv:0912.2088
  10. 10.
    Karoubi, M.: A descent theorem in topological K-theory. K-Theory 24(2), 109–114 (2001). doi: 10.1023/A:1012785711074 MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Karoubi, M., Lambre, T.: Quelques classes caractéristiques en théorie des nombres. J. Reine Angew. Math. 543, 169–186 (2002). doi: 10.1515/crll.2002.013. French, with English summary MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Kasparov, G.G.: The operator K-functor and extensions of C -algebras. Izv. Akad. Nauk SSSR, Ser. Mat. 44(3), 571–636 (1980), 719 (Russian); English transl., Math. USSR-Izv. 16, 513–572 (1981) MathSciNetMATHGoogle Scholar
  13. 13.
    Köhler, M.: Universal coefficient theorems in equivariant KK-theory. Georg-August-Universität Göttingen (2010). http://resolver.sub.uni-goettingen.de/purl/?webdoc-2828
  14. 14.
    Meyer, R., Nest, R.: The Baum–Connes conjecture via localisation of categories. Topology 45(2), 209–259 (2006). doi: 10.1016/j.top.2005.07.001 MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Neeman, A.: Triangulated Categories. Annals of Mathematics Studies, vol. 148. Princeton University Press, Princeton (2001) MATHGoogle Scholar
  16. 16.
    Schick, T.: Real versus complex K-theory using Kasparov’s bivariant KK-theory. Algebr. Geom. Topol. 4, 333–346 (2004). doi: 10.2140/agt.2004.4.333 MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Schochet, C.: Topological methods for C -algebras. IV. Mod p homology. Pac. J. Math. 114(2), 447–468 (1984) MathSciNetMATHGoogle Scholar

Copyright information

© Mathematisches Seminar der Universität Hamburg and Springer 2011

Authors and Affiliations

  • Hvedri Inassaridze
    • 1
    • 2
  • Tamaz Kandelaki
    • 1
    • 2
  • Ralf Meyer
    • 3
  1. 1.A. Razmadze Mathematical InstituteTbilisi State UniversityTbilisiGeorgia
  2. 2.Tbilisi Centre for Mathematical SciencesTbilisiGeorgia
  3. 3.Mathematisches Institut and Courant Centre “Higher order structures”Georg-August Universität GöttingenGöttingenGermany

Personalised recommendations