Riemannian submersions from almost contact metric manifolds

  • S. Ianuş
  • A. M. Ionescu
  • R. Mocanu
  • G. E. Vîlcu
Article

Abstract

In this paper we obtain the structure equation of a contact-complex Riemannian submersion and give some applications of this equation in the study of almost cosymplectic manifolds with Kähler fibres.

Keywords

Almost contact metric manifold Almost Hermitian manifold Contact-complex Riemannian submersion 

Mathematics Subject Classification (2000)

53C15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Băditoiu, G., Ianuş, S.: Semi-Riemannian submersions from real and complex pseudo-hyperbolic spaces. Differ. Geom. Appl. 16(1), 79–94 (2002) MATHCrossRefGoogle Scholar
  2. 2.
    Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Birkhäuser, Boston (2002) MATHGoogle Scholar
  3. 3.
    Bonome, A., Hervella, L.M., Rozas, I.: On the classes of almost Hermitian structures on the tangent bundle of an almost contact metric manifold. Acta Math. Hung. 56(1–2), 29–37 (1990) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bourguignon, J.P., Lawson, H.B.: A mathematician’s visit to Kaluza-Klein theory. Rend. Semin. Mat. Torino, Fasc. Spec. 143–163 (1989) Google Scholar
  5. 5.
    Bourguignon, J.P., Lawson, H.B.: Stability and isolation phenomena for Yang-Mills fields. Commun. Math. Phys. 79, 189–230 (1981) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Cabrerizo, J., Carriazo, A., Fernández, L., Fernández, M.: Riemannian submersions and slant submanifolds. Publ. Math. 61(3–4), 523–532 (2002) MATHGoogle Scholar
  7. 7.
    Chen, B.-Y.: Riemannian submersions with minimal fibers and affine hypersurfaces. Monatshefte Math. 151(2), 143–152 (2007) MATHCrossRefGoogle Scholar
  8. 8.
    Chinea, D.: Almost contact metric submersions. Rend. Circ. Mat. Palermo, Ser. II 34, 89–104 (1985) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Chinea, D.: Harmonicity of holomorphic maps between almost Hermitian manifolds. Can. Math. Bull. 52(1), 18–27 (2009) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Cortés, V., Mohaupt, T.: Special geometry of Euclidean supersymmetry III: the local r-map, instantons and black holes. J. High Energy Phys. 07, 066 (2009) CrossRefGoogle Scholar
  11. 11.
    Escobales, R.: Riemannian submersions from complex projective space. J. Differ. Geom. 13, 93–107 (1978) MathSciNetMATHGoogle Scholar
  12. 12.
    Falcitelli, M.: Some classes of almost contact metric manifolds and contact Riemannian submersions. Acta Math. Hung. 105(4), 291–312 (2004) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Falcitelli, M., Ianuş, S., Pastore, A.M.: Riemannian Submersions and Related Topics. World Scientific, Singapore (2004) MATHCrossRefGoogle Scholar
  14. 14.
    Gray, A.: Curvature identities for Hermitian and almost Hermitian manifolds. Tohoku Math. J. 28, 601–612 (1976) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Ianuş, S., Pastore, A.M.: Harmonic maps on contact metric manifolds. Ann. Math. Blaise Pascal 2(2), 43–53 (1995) MathSciNetMATHGoogle Scholar
  16. 16.
    Ianuş, S., Vişinescu, M.: Kaluza-Klein theory with scalar fields and generalized Hopf manifolds. Class. Quantum Gravity 4, 1317–1325 (1987) MATHCrossRefGoogle Scholar
  17. 17.
    Ianuş, S., Vişinescu, M.: Space-time compactification and Riemannian submersions. In: Rassias, G. (ed.) The Mathematical Heritage of C.F. Gauss, pp. 358–371. World Scientific, Singapore (1991) Google Scholar
  18. 18.
    Ianuş, S., Mazzocco, R., Vîlcu, G.E.: Riemannian submersions from quaternionic manifolds. Acta Appl. Math. 104(1), 83–89 (2008) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Ianuş, S., Marchiafava, S., Vîlcu, G.E.: Paraquaternionic CR-submanifolds of paraquaternionic Kähler manifolds and semi-Riemannian submersions. Cent. Eur. J. Math. 8(4), 735–753 (2010) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. II. Wiley, New York (1969) MATHGoogle Scholar
  21. 21.
    Mocanu, R., Munteanu, M.I.: Gray curvature identities for almost contact metric manifolds. J. Korean Math. Soc. 47(3), 505–521 (2010) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Mustafa, M.T.: Applications of harmonic morphisms to gravity. J. Math. Phys. 41(10), 6918–6929 (2000) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Narita, F.: CR-submanifolds of locally conformal Kaehler manifolds and Riemannian submersions. Colloq. Math. 70(2), 165–179 (1996) MathSciNetMATHGoogle Scholar
  24. 24.
    O’Neill, B.: Fundamental equations of submersions. Mich. Math. J. 39, 459–464 (1966) MathSciNetGoogle Scholar
  25. 25.
    Olszak, Z.: Almost cosymplectic manifolds with Kählerian leaves. Tensor 46, 117–124 (1987) MATHGoogle Scholar
  26. 26.
    Sahin, B.: Screen conformal submersions between lightlike manifolds and semi-Riemannian manifolds and their harmonicity. Int. J. Geom. Methods Mod. Phys. 4(6), 987–1003 (2007) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Tshikuna-Matamba, T.: On the structure of the base space and the fibres of an almost contact metric submersion. Houst. J. Math. 23(2), 291–305 (1997) MathSciNetMATHGoogle Scholar
  28. 28.
    Vergara-Diaz, E., Wood, C.M.: Harmonic contact metric structures and submersions. Int. J. Math. 20(2), 209–225 (2009) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Vişinescu, M.: Space-time compactification induced by nonlinear sigma models, gauge fields and submersions. Czechoslov. J. Phys. 37, 525–528 (1987) CrossRefGoogle Scholar
  30. 30.
    Vîlcu, G.E.: A new class of semi-Riemannian submersions. Rom. J. Phys. 54(9–10), 815–821 (2009) Google Scholar
  31. 31.
    Vîlcu, G.E.: 3-submersions from QR-hypersurfaces of quaternionic Kähler manifolds. Ann. Pol. Math. 98(3), 301–309 (2010) MATHCrossRefGoogle Scholar
  32. 32.
    Watson, B.: Almost Hermitian submersions. J. Differ. Geom. 11, 147–165 (1976) MATHGoogle Scholar
  33. 33.
    Watson, B.: G,G′-Riemannian submersions and nonlinear gauge field equations of general relativity. In: Rassias, T. (ed.) Global Analysis—Analysis on Manifolds, dedic. M. Morse. Teubner-Texte Math., vol. 57, pp. 324–349 (1983) Google Scholar
  34. 34.
    Watson, B.: Superminimal fibres in an almost Hermitian submersion. Boll. Unione Mat. Ital, B 3(1), 159–172 (2000) MATHGoogle Scholar
  35. 35.
    Watson, B., Vanhecke, L.: K 1-curvatures and almost Hermitian submersions. Rend. Semin. Mat. (Torino) 36, 205–224 (1978) MathSciNetGoogle Scholar
  36. 36.
    Watson, B., Vanhecke, L.: The structure equation of an almost semi-Kähler submersion. Houst. J. Math. 5, 295–305 (1979) MathSciNetMATHGoogle Scholar

Copyright information

© Mathematisches Seminar der Universität Hamburg and Springer 2011

Authors and Affiliations

  • S. Ianuş
    • 1
  • A. M. Ionescu
    • 2
  • R. Mocanu
    • 3
  • G. E. Vîlcu
    • 4
    • 5
  1. 1.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania
  2. 2.Mathematics DepartmentPolitehnica University of BucharestBucharestRomania
  3. 3.BucharestRomania
  4. 4.Department of Mathematics and Computer SciencePetroleum-Gas University of PloieştiPloieştiRomania
  5. 5.Research Center in Geometry, Topology and AlgebraUniversity of BucharestBucharestRomania

Personalised recommendations