Balanced metrics on Hartogs domains

Article

Abstract

An n-dimensional strictly pseudoconvex Hartogs domain DF can be equipped with a natural Kähler metric gF. In this paper we prove that if m0gF is balanced for a given positive integer m0 then m0>n and (DF,gF) is holomorphically isometric to an open subset of the n-dimensional complex hyperbolic space.

Keywords

Kähler metrics Balanced metrics Hartogs domains 

Mathematics Subject Classification (2000)

53C55 58C25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arezzo, C., Loi, A.: Quantization of Kählermanifolds and the asymptotic expansion of Tian–Yau–Zelditch. J. Geom. Phys. 867, 1–13 (2003) MathSciNetGoogle Scholar
  2. 2.
    Arezzo, C., Loi, A.: Moment maps, scalar curvature and quantization of Kählermanifolds. Commun. Math. Phys. 243, 543–559 (2004) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cahen, M., Gutt, S., Rawnsley, J.: Quantization of Kähler manifolds. I: Geometric interpretation of Berezin’s quantization. J. Geom. Phys. 7, 45–62 (1990) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Cuccu, F., Loi, A.: Global symplectic coordinates on complex domains. J. Geom. Phys. 56, 247–259 (2006) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Cuccu, F., Loi, A.: Balanced metrics on ℂn. J. Geom. Phys. 57, 1115–1123 (2007) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Di Scala, A.J., Loi, A., Zuddas, F.: Riemannian geometry of Hartogs domains. Int. J. Math. 2 20, 139–148 (2009) MATHCrossRefGoogle Scholar
  7. 7.
    Donaldson, S.: Scalar curvature and projective embeddings, I. J. Differ. Geom. 59, 479–522 (2001) MathSciNetMATHGoogle Scholar
  8. 8.
    Engliš, M.: Berezin quantization and reproducing kernels on complex domains. Trans. Am. Math. Soc. 348(2), 411–479 (1996) MATHCrossRefGoogle Scholar
  9. 9.
    Engliš, M.: Weighted Bergman kernels and balanced metrics. RIMS Kokyuroku 1487, 40–54 (2006) Google Scholar
  10. 10.
    Greco, A., Loi, A.: Radial balanced metrics on the unit disk. J. Geom. Phys. 60, 53–59 (2010) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Gramchev, T., Loi, A.: TYZ expansion for the Kepler manifold. Commun. Math. Phys. 289, 825–840 (2009) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Ji, S.: Inequality for distortion function of invertible shaves on Abelian varieties. Duke Math. J. 58, 657–667 (1989) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Kempf, G.R.: Metrics on invertible shaves on abelian varieties. In: Topics in Algebraic Geometry, Guanajuato, 1989. Aportationes Mat. Notas Investigacion, vol. 5, pp. 107–108. Soc. Mat. Mexicana, Mexico, (1992) Google Scholar
  14. 14.
    Loi, A.: Quantization of bounded domains. J. Geom. Phys. 29, 1–4 (1999) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Loi, A.: Holomorphic maps of Hartogs domains into complex space forms. Riv. Mat. Univ. Parma 1(7), 103–113 (2002) MathSciNetMATHGoogle Scholar
  16. 16.
    Loi, A.: Regular quantizations of Kähler manifolds and constant scalar curvature metrics. J. Geom. Phys. 53, 354–364 (2005) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Loi, A., Zuddas, F.: Canonical metrics on Hartogs domains. Osaka J. Math. 47(2) (2010) Google Scholar
  18. 18.
    Nachman, A.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68(3), 337–404 (1950) CrossRefGoogle Scholar
  19. 19.
    Rawnsley, J.: Coherent states and Kähler manifolds. Q. J. Math. 28(2), 403–415 (1977) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Zhang, S.: Heights and reductions of semi-stable varieties. Compos. Math. 104, 77–105 (1996) MATHGoogle Scholar

Copyright information

© Mathematisches Seminar der Universität Hamburg and Springer 2011

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità di CagliariCagliariItaly

Personalised recommendations