Maschke’s theorem for smash products of quasitriangular weak Hopf algebras



The paper is concerned with the semisimplicity of smash products of quasitriangular weak Hopf algebras. Let (H,R) be a finite dimensional quasitriangular weak Hopf algebra over a field k and A any semisimple and quantum commutative weak H-module algebra. Based on the work of Nikshych et al. (Topol. Appl. 127(1–2):91–123, 2003), we give Maschke’s theorem for smash products of quasitriangular weak Hopf algebras, stating that A#H is semisimple if and only if A is a projective left A#H-module, which extends the Theorem 3.2 given in Yang and Wang (Commun. Algebra 27(3):1165–1170, 1999).


Quasitriangular weak Hopf algebra Weak module algebra Weak smash product Maschke’s theorem 

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alonso Álvarez, J.M., Fernández Vilaboa, J.N., González Rodríguez, R.: Weak Yang-Baxter operators and quasitriangular weak Hopf algebras. Arab. J. Sci. Eng. 33(2), 27–40 (2008) MathSciNetMATHGoogle Scholar
  2. 2.
    Böhm, G., Nill, F., Szlachányi, K.: Weak Hopf algebras (I): Integral theory and C -structure. J. Algebra 221(2), 385–438 (1999) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Caenepeel, S., Militaru, G., Zhu, S.: Frobenius and Separable Functors for Genneralized Hopf Modules and Nonlinear Equations. Lect. Notes in Math, vol. 1787. Springer, Berlin (2002) Google Scholar
  4. 4.
    Doi, Y.: On the structure of relative Hopf modules. Commun. Algebra 11(3), 243–255 (1983) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Etingof, P., Nikshych, D.: Dynamical quantum groups at roots of 1. Duke J. Math. 108, 135–168 (2001) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Etingof, P., Schiffmann, O.: Lectures on the dynamical Yang-Baxter equations. Lect. Notes Lond. Math. Soc. 290, 89–129 (2001) MathSciNetGoogle Scholar
  7. 7.
    Gao, N.: Actions of semisimple weak Hopf algebras. J. Math. Res. Expo. 28(1), 25–34 (2008) MATHGoogle Scholar
  8. 8.
    Jia, L., Li, F.: Global dimension of weak smash product. J. Zhejiang Univ. Sci. A 7(12), 2088–2092 (2006) MATHCrossRefGoogle Scholar
  9. 9.
    Montgomery, S.: Hopf Algebras and their Actions on Rings. ICBMS, Chicago (1993) MATHGoogle Scholar
  10. 10.
    Nikshych, D.: A duality theorem for quantum groupoids. Contemp. Math. 267, 237–243 (2000) MathSciNetGoogle Scholar
  11. 11.
    Nikshych, D., Vainerman, L.: Finite quantum groupoids and their applications. Math. Sci. Res. Inst. Publ. 43, 211–262 (2002) MathSciNetGoogle Scholar
  12. 12.
    Nikshych, D., Turaev, V., Vainerman, L.: Quantum groupoids and invariants of knots and 3-manifolds. Topol. Appl. 127(1–2), 91–123 (2003) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Wang, Y., Zhang, L.Y.: The structure theorem and duality theorem for endomorphism algebras of weak Hopf algebras. J. Pure Appl. Algebra (2010). doi:10.1016/j.jpaa.2010.07.015 Google Scholar
  14. 14.
    Yang, S.L., Wang, Z.X.: The semisimplicity of smash products of quantum commutative algebras. Commun. Algebra 27(3), 1165–1170 (1999) MATHCrossRefGoogle Scholar
  15. 15.
    Zhang, L.Y.: Maschke-type theorem and Morita context over weak Hopf algebras. Sci. China Ser. A 49(5), 587–598 (2006) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Zhang, L.Y.: The structure theorem of weak Hopf algebras. Commun. Algebra 38(4), 1269–1281 (2010) MATHCrossRefGoogle Scholar
  17. 17.
    Zhang, L.Y., Zhu, S.L.: Fundamental theorems of weak Doi-Hopf modules and semisimple weak smash product Hopf algebras. Commun. Algebra 32(9), 3403–3415 (2004) MATHCrossRefGoogle Scholar

Copyright information

© Mathematisches Seminar der Universität Hamburg and Springer 2011

Authors and Affiliations

  1. 1.Department of MathematicsNanjing Agricultural UniversityNanjingP.R. China

Personalised recommendations