A superadditive property of Hadamard’s gamma function

  • Horst AlzerEmail author


Hadamard’s gamma function is defined by
$$H(x)=\frac{1}{\Gamma(1-x)}\frac{d}{dx}\log \frac{\Gamma(1/2-x/2)}{\Gamma(1-x/2)},$$
where Γ denotes the classical gamma function of Euler. H is an entire function, which satisfies H(n)=(n−1)! for all positive integers n. We prove the following superadditive property.
Let α be a real number. The inequality
$$H(x)+H(y)\leq H(x+y)$$
holds for all real numbers x,y with x,yα if and only if αα 0=1.5031…. Here, α 0 is the only solution of H(2t)=2H(t) in [1.5,∞).


Hadamard’s and Euler’s gamma functions Psi function Superadditive Convex Inequalities 

Mathematics Subject Classification (2000)

33B15 39B62 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1965) Google Scholar
  2. 2.
    Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comput. 66, 373–389 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alzer, H.: A power mean inequality for the gamma function. Monatsh. Math. 131, 179–188 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Alzer, H.: Mean-value inequalities for the polygamma functions. Aequ. Math. 61, 151–161 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Alzer, H., Ruscheweyh, S.: A subadditive property of the gamma function. J. Math. Anal. Appl. 285, 564–577 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Davis, P.J.: Leonhard Euler’s integral: a historical profile of the gamma function. Am. Math. Mon. 66, 849–869 (1959) zbMATHCrossRefGoogle Scholar
  7. 7.
    Gautschi, W.: The incomplete gamma function since Tricomi. In: Tricomi’s Ideas and Contemporary Applied Mathematics, Atti Convegni Lincei, vol. 147, pp. 203–237. Accad. Naz. Lincei, Rome (1998) Google Scholar
  8. 8.
    Luschny, P.: Is the gamma function misdefined? Or: Hadamard versus Euler—who found the better gamma function?
  9. 9.
    Mijajlović, Ž., Malešević, B.: Differentially transcendental functions. arXiv:math.GM/0412354 v3, 9 Feb 2006
  10. 10.
    Newton, T.A.: Derivation of a factorial function by method of analogy. Am. Math. Mon. 68, 917–920 (1961) CrossRefGoogle Scholar
  11. 11.
    Sándor, J.: A bibliography on gamma functions: inequalities and applications.

Copyright information

© Mathematisches Seminar der Universität Hamburg and Springer 2008

Authors and Affiliations

  1. 1.WaldbrölGermany

Personalised recommendations