A superadditive property of Hadamard’s gamma function
Article
First Online:
- 119 Downloads
- 4 Citations
Abstract
Hadamard’s gamma function is defined by where Γ denotes the classical gamma function of Euler. H is an entire function, which satisfies H(n)=(n−1)! for all positive integers n. We prove the following superadditive property.
$$H(x)=\frac{1}{\Gamma(1-x)}\frac{d}{dx}\log \frac{\Gamma(1/2-x/2)}{\Gamma(1-x/2)},$$
Let α be a real number. The inequality holds for all real numbers x,y with x,y≥α if and only if α≥α 0=1.5031…. Here, α 0 is the only solution of H(2t)=2H(t) in [1.5,∞).
$$H(x)+H(y)\leq H(x+y)$$
Keywords
Hadamard’s and Euler’s gamma functions Psi function Superadditive Convex InequalitiesMathematics Subject Classification (2000)
33B15 39B62Preview
Unable to display preview. Download preview PDF.
References
- 1.Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1965) Google Scholar
- 2.Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comput. 66, 373–389 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
- 3.Alzer, H.: A power mean inequality for the gamma function. Monatsh. Math. 131, 179–188 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
- 4.Alzer, H.: Mean-value inequalities for the polygamma functions. Aequ. Math. 61, 151–161 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
- 5.Alzer, H., Ruscheweyh, S.: A subadditive property of the gamma function. J. Math. Anal. Appl. 285, 564–577 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
- 6.Davis, P.J.: Leonhard Euler’s integral: a historical profile of the gamma function. Am. Math. Mon. 66, 849–869 (1959) zbMATHCrossRefGoogle Scholar
- 7.Gautschi, W.: The incomplete gamma function since Tricomi. In: Tricomi’s Ideas and Contemporary Applied Mathematics, Atti Convegni Lincei, vol. 147, pp. 203–237. Accad. Naz. Lincei, Rome (1998) Google Scholar
- 8.Luschny, P.: Is the gamma function misdefined? Or: Hadamard versus Euler—who found the better gamma function? http://www.luschny.de/math/factorial/hadamard/HadamardsGammaFunction.html
- 9.Mijajlović, Ž., Malešević, B.: Differentially transcendental functions. arXiv:math.GM/0412354 v3, 9 Feb 2006
- 10.Newton, T.A.: Derivation of a factorial function by method of analogy. Am. Math. Mon. 68, 917–920 (1961) CrossRefGoogle Scholar
- 11.Sándor, J.: A bibliography on gamma functions: inequalities and applications. http://www.math.ubbcluj.ro/~jsandor/letolt/art42.pdf
Copyright information
© Mathematisches Seminar der Universität Hamburg and Springer 2008