Some natural equivalence relations in the Solovay model

  • Sy-David Friedman
  • Vladimir Kanovei


We obtain some non-reducibility results concerning some natural equivalence relations on reals in the Solovay model. The proofs use the existence of reals x which are minimal with respect to the cardinals in L[x], in a certain sense.


Equivalence relations Solovay model Forcing Constructibility 

Mathematics Subject Classification (2000)

03E15 03E35 03E45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Friedman, S.D.: Fine Structure and Class Forcing. de Gruyter Series in Logic and its Applications, vol. 3. de Gruyter, Berlin (2000) zbMATHGoogle Scholar
  2. 2.
    Hjorth, G., Kechris, A.S.: Analytic equivalence relations and Ulm-type classification. J. Symb. Log. 60, 1273–1300 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Kanovei, V.: An Ulm-type classification theorem for equivalence relations in Solovay model. J. Symb. Log. 62(4), 1333–1351 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Kanovei, V.: Ulm classification of analytic equivalence relations in generic universes. Math. Log. Q. 44(3), 287–303 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kanovei, V.: Borel Equivalence Relations: Structure and Classification. AMS University Lecture Series, vol. 44. Am. Math. Soc., Providence (2008), 236 p. zbMATHGoogle Scholar
  6. 6.
    Kanovei, V., Reeken, M.: A theorem on ROD-hypersmooth equivalence relations in the Solovay model. Math. Log. Q. 49(3), 299–304 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kechris, A.S.: New directions in descriptive set theory. Bull. Symb. Log. 5(2), 161–174 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kechris, A.S., Louveau, A.: The classification of hypersmooth Borel equivalence relations. J. Am. Math. Soc. 10(1), 215–242 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Louveau, A., Velickovic, B.: A note on Borel equivalence relations. Proc. Am. Math. Soc. 120(1), 255–259 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Solovay, R.M.: A model of set theory in which every set of reals is Lebesgue measurable. Ann. Math. 92, 1–56 (1970) CrossRefMathSciNetGoogle Scholar

Copyright information

© Mathematisches Seminar der Universität Hamburg and Springer 2008

Authors and Affiliations

  1. 1.Kurt Gödel Research Center for Mathematical LogicWienAustria
  2. 2.Institute for Information Transmission ProblemsMoscowRussia

Personalised recommendations