International Journal of Hematology

, Volume 109, Issue 1, pp 35–40 | Cite as

What do the lineage tracing studies tell us? Consideration for hematopoietic stem cell origin, dynamics, and leukemia-initiating cells

  • Nathalia Azevedo Portilho
  • Michihiro Kobayashi
  • Momoko Yoshimoto
Progress in Hematology Molecular pathogenesis of leukemia and stem cells


The recent advance of technologies enables us to trace the cell fate in vivo by marking the cells that express the gene of interest or by barcoding them at a single cell level. Various tamoxifen-inducible Cre-recombinase mice combined with Rosa-floxed lines are utilized. In this review, with the results revealed by lineage tracing assays, we re-visit the long-standing debate for the origin of hematopoietic stem cells in the mouse embryo, and introduce the view of native hematopoiesis, and possible leukemic-initiating cells emerged during fetal stages.


Hematopoietic stem cells Mouse embryo Yolk sac AGM Lineage tracing 



This study is supported by NIAID R01AI121197.


  1. 1.
    Muller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E. Development of hematopoietic stem cell activity in the mouse embryo. Immunity. 1994;1:291–301.CrossRefGoogle Scholar
  2. 2.
    Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell. 1996;86:897–906.CrossRefGoogle Scholar
  3. 3.
    Palis J, Robertson S, Kennedy M, Wall C, Keller G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development. 1999;126:5073–84.Google Scholar
  4. 4.
    Cumano A, Dieterlen-Lievre F, Godin I. Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell. 1996;86:907–16.CrossRefGoogle Scholar
  5. 5.
    Godin I, Dieterlen-Lievre F, Cumano A. Emergence of multipotent hemopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryos, beginning at 8.5 days postcoitus. Proc Natl Acad Sci USA. 1995;92:773–7.CrossRefGoogle Scholar
  6. 6.
    Yokota T, Huang J, Tavian M, Nagai Y, Hirose J, Zuniga-Pflucker JC, et al. Tracing the first waves of lymphopoiesis in mice. Development. 2006;133:2041–51.CrossRefGoogle Scholar
  7. 7.
    Nishikawa SI, Nishikawa S, Kawamoto H, Yoshida H, Kizumoto M, Kataoka H, et al. In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos. Immunity. 1998;8:761–9.CrossRefGoogle Scholar
  8. 8.
    Yoshimoto M, Montecino-Rodriguez E, Ferkowicz MJ, Porayette P, Shelley WC, Conway SJ, et al. Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential. Proc Natl Acad Sci USA. 2011;108:1468–73.CrossRefGoogle Scholar
  9. 9.
    Yoshimoto M, Porayette P, Glosson NL, Conway SJ, Carlesso N, Cardoso AA, et al. Autonomous murine T-cell progenitor production in the extra-embryonic yolk sac before HSC emergence. Blood. 2012;119:5706–14.CrossRefGoogle Scholar
  10. 10.
    Matsuoka S, Tsuji K, Hisakawa H, Xu MJ, Ebihara Y, Ishii T, et al. Generation of definitive hematopoietic stem cells from murine early yolk sac and paraaortic splanchnopleures by aorta-gonad-mesonephros region-derived stromal cells. Blood. 2001;98:6–12.CrossRefGoogle Scholar
  11. 11.
    Rybtsov S, Sobiesiak M, Taoudi S, Souilhol C, Senserrich J, Liakhovitskaia A, et al. Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region. J Exp Med. 2011;208:1305–15.CrossRefGoogle Scholar
  12. 12.
    Taoudi S, Gonneau C, Moore K, Sheridan JM, Blackburn CC, Taylor E, et al. Extensive hematopoietic stem cell generation in the AGM region via maturation of VE-cadherin+ CD45+ pre-definitive HSCs. Cell Stem Cell. 2008;3:99–108.CrossRefGoogle Scholar
  13. 13.
    Zhou F, Li X, Wang W, Zhu P, Zhou J, He W, et al. Tracing haematopoietic stem cell formation at single-cell resolution. Nature. 2016;533:487–92.CrossRefGoogle Scholar
  14. 14.
    Hadland BK, Varnum-Finney B, Mandal PK, Rossi DJ, Poulos MG, Butler JM, et al. A common origin for B-1a and B-2 lymphocytes in clonal pre-hematopoietic stem cells. Stem Cell Rep. 2017;8:1563–72.CrossRefGoogle Scholar
  15. 15.
    Weissman IL, Papaioannou V, Gardner R. Fetal hematopoietic origin of the adult hematolymphoid system. In: Clarkson B, Mark P, Till J, editors. Differentiation of normal and neoplastic hematopoietic cells. Cold Spring Harbor conferences on cell proliferation. New York: Cold Spring Harbor Laboratory; 1978. pp. 33–47.Google Scholar
  16. 16.
    Yoder MC, Hiatt K, Dutt P, Mukherjee P, Bodine DM, Orlic D. Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity. 1997;7:335–44.CrossRefGoogle Scholar
  17. 17.
    Arora N, Wenzel PL, McKinney-Freeman SL, Ross SJ, Kim PG, Chou SS, et al. Effect of developmental stage of HSC and recipient on transplant outcomes. Dev Cell. 2014;29:621–8.CrossRefGoogle Scholar
  18. 18.
    North T, Gu TL, Stacy T, Wang Q, Howard L, Binder M, et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development. 1999;126:2563–75.Google Scholar
  19. 19.
    Breier G, Breviario F, Caveda L, Berthier R, Schnürch H, Gotsch U, et al. Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood. 1996;87:630–41.Google Scholar
  20. 20.
    Zovein AC, Hofmann JJ, Lynch M, French WJ, Turlo KA, Yang Y, et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell. 2008;3:625–36.CrossRefGoogle Scholar
  21. 21.
    Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature. 2009;457:887–91.CrossRefGoogle Scholar
  22. 22.
    Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature. 2010;464:116–20.CrossRefGoogle Scholar
  23. 23.
    Samokhvalov IM, Samokhvalova NI, Nishikawa SI. Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature. 2007;446:1056–61.CrossRefGoogle Scholar
  24. 24.
    Tanaka Y, Hayashi M, Kubota Y, Nagai H, Sheng G, Nishikawa S-I, et al. Early ontogenic origin of the hematopoietic stem cell lineage. Proc Natl Acad Sci. 2012;109:4515–20.CrossRefGoogle Scholar
  25. 25.
    Van Handel B, Montel-Hagen A, Sasidharan R, Nakano H, Ferrari R, Boogerd CJ, et al. Scl represses cardiomyogenesis in prospective hemogenic endothelium and endocardium. Cell. 2012;150:590–605.CrossRefGoogle Scholar
  26. 26.
    Gordon EJ, Gale NW, Harvey NL. Expression of the hyaluronan receptor LYVE-1 is not restricted to the lymphatic vasculature; LYVE-1 is also expressed on embryonic blood vessels. Dev Dyn. 2008;237:1901–9.CrossRefGoogle Scholar
  27. 27.
    Lee LK, Ghorbanian Y, Wang W, Wang Y, Kim YJ, Weissman IL, et al. LYVE1 marks the divergence of yolk sac definitive hemogenic endothelium from the primitive erythroid lineage. Cell Rep. 2016;17:2286–98.CrossRefGoogle Scholar
  28. 28.
    Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M, Rudolph KL, et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell. 2013;154:1112–26.CrossRefGoogle Scholar
  29. 29.
    Benz C, Copley MR, Kent DG, Wohrer S, Cortes A, Aghaeepour N, et al. Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. Cell Stem Cell. 2012;10:273–83.CrossRefGoogle Scholar
  30. 30.
    Sun J, Ramos A, Chapman B, Johnnidis JB, Le L, Ho YJ, et al. Clonal dynamics of native haematopoiesis. Nature. 2014;514:322–7.CrossRefGoogle Scholar
  31. 31.
    Carrelha J, Meng Y, Kettyle LM, Luis TC, Norfo R, Alcolea V, et al. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature. 2018;554:106–11.CrossRefGoogle Scholar
  32. 32.
    Pei W, Feyerabend TB, Rössler J, Wang X, Postrach D, Busch K, et al. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature. 2017;548:456–60.CrossRefGoogle Scholar
  33. 33.
    Gazit R, Mandal PK, Ebina W, Ben-Zvi A, Nombela-Arrieta C, Silberstein LE, et al. Fgd5 identifies hematopoietic stem cells in the murine bone marrow. J Exp Med. 2014;211:1315–31.CrossRefGoogle Scholar
  34. 34.
    Sawai CM, Babovic S, Upadhaya S, Knapp DJHF, Lavin Y, Lau CM, et al. Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity. 2016;45:597–609.CrossRefGoogle Scholar
  35. 35.
    Chapple RH, Tseng Y-J, Hu T, Kitano A, Takeichi M, Hoegenauer KA, et al. Lineage tracing of murine adult hematopoietic stem cells reveals active contribution to steady-state hematopoiesis. Blood Adv. 2018;2:1220–8.CrossRefGoogle Scholar
  36. 36.
    Tajima Y, Ito K, Umino A, Wilkinson AC, Nakauchi H, Yamazaki S. Continuous cell supply from Krt7-expressing hematopoietic stem cells during native hematopoiesis revealed by targeted in vivo gene transfer method. Sci Rep. 2017;7:1–10.CrossRefGoogle Scholar
  37. 37.
    Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood dna sequence. N Engl J Med. 2014;371:2477–87.CrossRefGoogle Scholar
  38. 38.
    Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98.CrossRefGoogle Scholar
  39. 39.
    Sperling AS, Gibson CJ, Ebert BL. The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia. Nat Rev Cancer. 2017;17:5–19.CrossRefGoogle Scholar
  40. 40.
    Van Der Weyden L, Giotopoulos G, Rust AG, Matheson LS, Van Delft FW, Kong J, et al. Modeling the evolution of ETV6-RUNX1-induced B-cell precursor acute lymphoblastic leukemia in mice. Blood. 2011;118:1041–51.CrossRefGoogle Scholar
  41. 41.
    Hong D, Gupta R, Ancliff P, Atzberger A, Brown J, Soneji S, et al. Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science (80-). 2008;319:336–9.CrossRefGoogle Scholar
  42. 42.
    Papaemmanuil E, Rapado I, Li Y, Potter NE, Wedge DC, Tubio J, et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat Genet. 2014;46:116–25.CrossRefGoogle Scholar
  43. 43.
    Saida S, Watanabe KI, Sato-Otsubo A, Terui K, Yoshida K, Okuno Y, et al. Clonal selection in xenografted TAM recapitulates the evolutionary process of myeloid leukemia in Down syndrome. Blood. 2013;121:4377–87.CrossRefGoogle Scholar
  44. 44.
    Roberts I, Alford K, Hall G, Juban G, Richmond H, Norton A, et al. GATA1-mutant clones are frequent and often unsuspected in babies with Down syndrome: identification of a population at risk of leukemia. Blood. 2013;122:3908–17.CrossRefGoogle Scholar
  45. 45.
    Tarnawsky SP, Chan RJ, Yoder MC. Mice expressing KrasG12Din hematopoietic multipotent progenitor cells develop neonatal myeloid leukemia. J Clin Investig. 2017;127:3652–56.CrossRefGoogle Scholar
  46. 46.
    Zhang J, Wang J, Liu Y, Sidik H, Young KH, Lodish HF, et al. Oncogenic Kras-induced leukemogeneis: hematopoietic stem cells as the initial target and lineage-specific progenitors as the potential targets for final leukemic transformation. Blood. 2009;113:1304–14.CrossRefGoogle Scholar
  47. 47.
    Tang P, Gao C, Li A, Aster J, Sun L, Chai L. Differential roles of Kras and Pten in murine leukemogenesis. Leukemia. 2013;27:1210–14.CrossRefGoogle Scholar
  48. 48.
    Tarnawsky SP, Yu W-M, Qu C-K, Chan RJ, Yoder MC. Hematopoietic-restricted Ptpn11E76K reveals indolent MPN progression in mice. Oncotarget. 2018;9:21831–43.CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2018

Authors and Affiliations

  1. 1.Center for Stem Cell and Regenerative Medicine at Institute of Molecular Medicine, McGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonUSA

Personalised recommendations