Advertisement

International Journal of Hematology

, Volume 108, Issue 4, pp 447–451 | Cite as

Blastic plasmacytoid dendritic cell neoplasm arising from clonal hematopoiesis

  • Sakurako Suma
  • Mamiko Sakata-Yanagimoto
  • Tran B. Nguyen
  • Keiichiro Hattori
  • Taiki Sato
  • Masayuki Noguchi
  • Yasuhito Nannya
  • Seishi Ogawa
  • Rei Watanabe
  • Manabu Fujimoto
  • Naoya Nakamura
  • Manabu Kusakabe
  • Hidekazu Nishikii
  • Takayasu Kato
  • Shigeru Chiba
Case Report

Abstract

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare subtype of myeloid neoplasm. Clonal evolution in the development of BPDCN remains to be elucidated. In the present study, we examined clonal evolution in a case of BPDCN by analyzing the distribution of gene mutations in tumor cells and non-tumor blood cells. The p.D1129fs and p.K1005fs TET2 mutations, p.P95H SRSF2 mutation, and p.L287fs NPM1 mutation were identified in a skin tumor at diagnosis and peripheral blood mononuclear cells at relapse. Notably, the p.D1129fs TET2 and p.L287fs NPM1 mutations were observed only in tumor cells, while the p.K1005fs TET2 and p.P95H SRSF2 mutations were found in both tumor cells and non-tumor blood cells. Recent genetic studies have suggested that some blood cancers may originate from clonal hematopoiesis, harboring somatic mutations. In the present case, the data suggest that BPDCN originated from clonal hematopoiesis with the p.K1005fs TET2 and p.P95H SRSF2 mutations via acquisition of the additional p.D1129fs TET2 and p.L287fs NPM1 mutations.

Keywords

BPDCN Clonal hematopoiesis Myeloid neoplasms Mutation TET2 

Notes

Acknowledgements

This work was supported by Innovative Cancer Medical research project from Kobayashi Foundation for Cancer Research to M.S-Y. We thank Thomas Mayers, Medical English Communications Center, University of Tsukuba, for English proofreading.

Author contributions

SS, MS-Y, TBN, YN, and SC designed and performed research, analyzed data, and wrote the paper; TS and MN contributed to the pathological review. KH, SO, RW, MF, NN, MK, HN, and TK contributed to the sample collection and attended the vital discussion.

Compliance with ethical standards

Conflict of interest

All authors have no financial conflicts of interest.

Supplementary material

12185_2018_2461_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 21 KB)
12185_2018_2461_MOESM2_ESM.pdf (346 kb)
Supplementary material 2 (PDF 346 KB)
12185_2018_2461_MOESM3_ESM.xlsx (11 kb)
Supplementary material 3 (XLSX 11 KB)

References

  1. 1.
    Swerdllow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. IARC 2017.Google Scholar
  2. 2.
    Jardin F, Ruminy P, Parmentier F, Troussard X, Vaida I, Stamatoullas A, et al. TET2 and TP53 mutations are frequently observed in blastic plasmacytoid dendritic cell neoplasm. Br J Haematol. 2011;153(3):413–6.CrossRefGoogle Scholar
  3. 3.
    Menezes J, Acquadro F, Wiseman M, Gomez-Lopez G, Salgado RN, Talavera-Casanas JG, et al. Exome sequencing reveals novel and recurrent mutations with clinical impact in blastic plasmacytoid dendritic cell neoplasm. Leukemia. 2013.Google Scholar
  4. 4.
    Alayed K, Patel KP, Konoplev S, Singh RR, Routbort MJ, Reddy N, et al. TET2 mutations, myelodysplastic features, and a distinct immunoprofile characterize blastic plasmacytoid dendritic cell neoplasm in the bone marrow. Am J Hematol. 2013;88(12):1055–61.CrossRefGoogle Scholar
  5. 5.
    Stenzinger A, Endris V, Pfarr N, Andrulis M, Johrens K, Klauschen F, et al. Targeted ultra-deep sequencing reveals recurrent and mutually exclusive mutations of cancer genes in blastic plasmacytoid dendritic cell neoplasm. Oncotarget. 2014;5(15):6404–13.CrossRefGoogle Scholar
  6. 6.
    Lucioni M, Novara F, Fiandrino G, Riboni R, Fanoni D, Arra M, et al. Twenty-one cases of blastic plasmacytoid dendritic cell neoplasm: focus on biallelic locus 9p21.3 deletion. Blood. 2011;118(17):4591–4.CrossRefGoogle Scholar
  7. 7.
    Wiesner T, Obenauf AC, Cota C, Fried I, Speicher MR, Cerroni L. Alterations of the cell-cycle inhibitors p27(KIP1) and p16(INK4a) are frequent in blastic plasmacytoid dendritic cell neoplasms. J Invest Dermatol. 2010;130(4):1152–7.CrossRefGoogle Scholar
  8. 8.
    Emadali A, Hoghoughi N, Duley S, Hajmirza A, Verhoeyen E, Cosset FL, et al. Haploinsufficiency for NR3C1, the gene encoding the glucocorticoid receptor, in blastic plasmacytoid dendritic cell neoplasms. Blood. 2016;127(24):3040–53.CrossRefGoogle Scholar
  9. 9.
    Suzuki K, Suzuki Y, Hama A, Muramatsu H, Nakatochi M, Gunji M, et al. Recurrent MYB rearrangement in blastic plasmacytoid dendritic cell neoplasm. Leukemia. 2017;31(7):1629–33.CrossRefGoogle Scholar
  10. 10.
    Toya T, Nishimoto N, Koya J, Nakagawa M, Nakamura F, Kandabashi K, et al. The first case of blastic plasmacytoid dendritic cell neoplasm with MLL–ENL rearrangement. Leuk Res. 2012;36(1):117–8.CrossRefGoogle Scholar
  11. 11.
    Yang N, Huh J, Chung WS, Cho MS, Ryu KH, Chung HS. KMT2A (MLL)-MLLT1 rearrangement in blastic plasmacytoid dendritic cell neoplasm. Cancer Genet. 2015;208(9):464–7.CrossRefGoogle Scholar
  12. 12.
    Nakamura Y, Kayano H, Kakegawa E, Miyazaki H, Nagai T, Uchida Y, et al. Identification of SUPT3H as a novel 8q24/MYC partner in blastic plasmacytoid dendritic cell neoplasm with t(6;8)(p21;q24) translocation. Blood Cancer J. 2015;5:e301.CrossRefGoogle Scholar
  13. 13.
    Yoshizato T, Nannya Y, Atsuta Y, Shiozawa Y, Iijima-Yamashita Y, Yoshida K, et al. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation. Blood. 2017;129(17):2347–58.CrossRefGoogle Scholar
  14. 14.
    Heath EM, Chan SM, Minden MD, Murphy T, Shlush LI, Schimmer AD. Biological and clinical consequences of NPM1 mutations in AML. Leukemia. 2017;31(4):798–807.CrossRefGoogle Scholar
  15. 15.
    Ogawa S. Splicing factor mutations in myelodysplasia. Int J Hematol. 2012;96(4):438–442.CrossRefGoogle Scholar
  16. 16.
    Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence. N Engl J Med. 2014.Google Scholar
  17. 17.
    Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014.Google Scholar
  18. 18.
    Chiba S. Dysregulation of TET2 in hematologic malignancies. Int J Hematol. 2017;105(1):17–22.CrossRefGoogle Scholar
  19. 19.
    Brunetti L, Di Battista V, Venanzi A, Schiavoni G, Martelli MP, Ascani S, et al. Blastic plasmacytoid dendritic cell neoplasm and chronic myelomonocytic leukemia: a shared clonal origin. Leukemia. 2017;31(5):1238–40.CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2018

Authors and Affiliations

  • Sakurako Suma
    • 1
  • Mamiko Sakata-Yanagimoto
    • 1
    • 2
  • Tran B. Nguyen
    • 2
  • Keiichiro Hattori
    • 1
    • 2
  • Taiki Sato
    • 3
    • 4
  • Masayuki Noguchi
    • 3
  • Yasuhito Nannya
    • 5
  • Seishi Ogawa
    • 5
  • Rei Watanabe
    • 6
  • Manabu Fujimoto
    • 6
  • Naoya Nakamura
    • 7
  • Manabu Kusakabe
    • 1
    • 2
  • Hidekazu Nishikii
    • 1
    • 2
  • Takayasu Kato
    • 1
    • 2
  • Shigeru Chiba
    • 1
    • 2
  1. 1.Department of HematologyUniversity of Tsukuba HospitalTsukubaJapan
  2. 2.Department of Hematology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
  3. 3.Department of Pathology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
  4. 4.Department of Diagnostic Pathology DivisionTokyo Medical University Ibaraki Medical CenterInashikiJapan
  5. 5.Department of Pathology and Tumor BiologyKyoto UniversityKyotoJapan
  6. 6.Department of Dermatology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
  7. 7.Department of PathologyTokai University School of MedicineIseharaJapan

Personalised recommendations