Advertisement

International Journal of Hematology

, Volume 108, Issue 2, pp 139–144 | Cite as

Effects of plasma glycosyltransferase on the ABO(H) blood group antigens of human von Willebrand factor

  • Taiki Kano
  • Kazunao Kondo
  • Jiharu Hamako
  • Fumio Matsushita
  • Kazuya Sakai
  • Taei Matsui
Original Article

Abstract

Von Willebrand factor (VWF) is one of the plasma protein carrying ABO(H) blood group antigens, but the combining process of these antigens is not clear. In the present study, we examined whether plasma glycosyltransferase affects the blood group antigens on VWF. VWF expressing H-antigen (H-VWF) from blood group O and bovine serum albumin conjugated with H-antigen (H-BSA) were incubated with recombinant α1-3-N-acetylgalactosaminyltransferase (rA-transferase) and A-plasma with or without an additional UDP-GalNAc. Transformed antigens were detected by western blotting and ELISA, using an anti-A antibody. Both H-VWF and H-BSA acquired the A-antigen after incubation with rA-transferase and UDP-GalNAc. Incubation with A-plasma very weakly converted the H-antigen on BSA and VWF to A-antigen only in the presence of supplemented UDP-GalNAc. This conversion was enhanced on desialylation of H-VWF. These results indicate that sugar chains of plasma VWF can be modified by the external glycosyltransferase, but that plasma glycosyltransferase has no effect on the blood group antigens of VWF due to its low activity and the lack of donor sugars. Further, sialic acid residues of VWF may exert a protective effect against post-translational glycosylation. Our results clearly exclude the possibility that blood group antigens of VWF are constructed extracellularly in plasma.

Keywords

von Willebrand factor ABO blood group Plasma Glycosyltransferase Sugar nucleotide 

Notes

Acknowledgements

This work was supported by Grant-in-Aid for Scientific Research (C) (Grant number 25461463 to TM) from the Japan Society for the Promotion of Science.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Franchini M, Mannucci PM. von Willebrand factor: another janus-faced hemostasis protein. Semin Thromb Hemost. 2008;34:663–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Sadler JE. von Willebrand factor: two sides of a coin. J Thromb Haemost. 2005;3:1702–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Sadler JE. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem. 1998;67:395–424.CrossRefPubMedGoogle Scholar
  4. 4.
    Sadler JE, Mannucci PM, Berntorp E, Bochkov N, Boulyjenkov V, Ginsburg D, et al. Impact, diagnosis and treatment of von Willebrand disease. Thromb Haemost. 2000;84:160–74.CrossRefPubMedGoogle Scholar
  5. 5.
    Titani K, Kumar S, Takio K, Ericsson LH, Wade RD, Ashida K, et al. Amino acid sequence of human von Willebrand factor. Biochemistry. 1986;25:3171–84.CrossRefPubMedGoogle Scholar
  6. 6.
    Canis K, McKinnon TA, Nowak A, Haslam SM, Panico M, Morris HR, et al. Mapping the N-glycome of human von Willebrand factor. Biochem J. 2012;447:217–28.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhou YF, Eng ET, Zhu J, Lu C, Walz T, Springer TA. Sequence and structure relationships within von Willebrand factor. Blood. 2012;120:449–58.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Samor B, Michalski J, Mazurier C, Goudemand M, Waard P, Vliegenthart JFG, et al. Primary structure of the major O-glycosidically linked carbohydrate unit of human von Willebrand factor. Glycoconj J. 1989;6:263–70.CrossRefPubMedGoogle Scholar
  9. 9.
    Matsui T, Titani K, Mizuochi T. Structures of the asparagine-linked oligosaccharide chains of human von Willebrand factor. Occurrence of blood group A, B, and H(O) structures. J Biol Chem. 1992;267:8723–31.PubMedGoogle Scholar
  10. 10.
    Schulte am Esch J 2nd, Robson SC, Knoefel WT, Eisenberger CF, Peiper M, Rogiers X. Impact of O-linked glycosylation of the VWF-A1-domain flanking regions on platelet interaction. Br J Haematol. 2005;128:82–90.CrossRefPubMedGoogle Scholar
  11. 11.
    Nowak AA, Canis K, Riddell A, Laffan MA, McKinnon TA. O-linked glycosylation of von Willebrand factor modulates the interaction with platelet receptor glycoprotein Ib under static and shear stress conditions. Blood. 2012;120:214–22.CrossRefPubMedGoogle Scholar
  12. 12.
    Denis CV, Christophe OD, Oortwijn BD, Lenting PJ. Clearance of von Willebrand factor. Thromb Haemost. 2008;99:271–8.PubMedGoogle Scholar
  13. 13.
    Matsui T, Fujimura Y, Nishida S, Titani K. Human plasma alpha 2-macroglobulin and von Willebrand factor possess covalently linked ABO(H) blood group antigens in subjects with corresponding ABO phenotype. Blood. 1993;82:663–8.PubMedGoogle Scholar
  14. 14.
    Matsui T, Titani K. ABO(H) blood group expression on circulating glycoproteins. Methods Mol Med. 1998;9:235–45.PubMedGoogle Scholar
  15. 15.
    Gill JC, Endres-Brooks J, Bauer PJ, Marks WJ Jr, Montgomery RR. The effect of ABO blood group on the diagnosis of von Willebrand disease. Blood. 1987;69:1691–5.PubMedGoogle Scholar
  16. 16.
    Shima M, Fujimura Y, Nishiyama T, Tsujiuchi T, Narita N, Matsui T, et al. ABO blood group genotype and plasma von Willebrand factor in normal individuals. Vox Sang. 1995;68:236–40.CrossRefPubMedGoogle Scholar
  17. 17.
    O’Donnell J, Boulton FE, Manning RA, Laffan MA. Amount of H antigen expressed on circulating von Willebrand factor is modified by ABO blood group genotype and is a major determinant of plasma von Willebrand factor antigen levels. Arterioscler Thromb Vasc Biol. 2002;22:335–41.CrossRefPubMedGoogle Scholar
  18. 18.
    O’Donnell J, McKinnon TA, Crawley JT, Lane DA, Laffan MA. Bombay phenotype is associated with reduced plasma-VWF levels and an increased susceptibility to ADAMTS13 proteolysis. Blood. 2005;106:1988–91.CrossRefPubMedGoogle Scholar
  19. 19.
    Liumbruno GM, Franchini M. Beyond immunohematology: the role of the ABO blood group in human diseases. Blood Transfus. 2013;11:491–9.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Franchini M, Favaloro EJ, Targher G, Lippi G. ABO blood group, hypercoagulability, and cardiovascular and cancer risk. Crit Rev Clin Lab Sci. 2012;49:137–49.CrossRefPubMedGoogle Scholar
  21. 21.
    Anstee DJ. The relationship between blood groups and disease. Blood. 2010;115:4635–43.CrossRefPubMedGoogle Scholar
  22. 22.
    Watkins WM. Biochemistry and genetics of the ABO, Lewis, and P blood group systems. Adv Hum Genet. 1980;10:1–136.PubMedGoogle Scholar
  23. 23.
    Morgan WT. The Croonian lecture: a contribution to human biochemical genetics; the chemical basis of blood-group specificity. Proc R Soc Lond B Biol Sci. 1960;151:308–47.CrossRefPubMedGoogle Scholar
  24. 24.
    Matsui T, Shimoyama T, Matsumoto M, Fujimura Y, Takemoto Y, Sako M, et al. ABO blood group antigens on human plasma von Willebrand factor after ABO-mismatched bone marrow transplantation. Blood. 1999;94:2895–900.PubMedGoogle Scholar
  25. 25.
    Brown SA, Collins PW, Bowen DJ. Heterogeneous detection of A-antigen on von Willebrand factor derived from platelets, endothelial cells and plasma. Thromb Haemost. 2002;87:990–6.CrossRefPubMedGoogle Scholar
  26. 26.
    O’Donnell J, Laffan MA. Dissociation of ABH antigen expression from von Willebrand factor synthesis in endothelial cell lines. Br J Haematol. 2003;121:928–31.CrossRefPubMedGoogle Scholar
  27. 27.
    Whitehead JS, Bella A Jr, Kim YS. An N-acetylgalactosaminyltransferase from human blood group A plasma I. Purification and agarose binding properties. J Biol Chem. 1974;249:3442–7.Google Scholar
  28. 28.
    Katayama M, Hirai S, Kato I, Titani K. Immunoenzymometric analysis for plasma von Willebrand factor degradation in diabetes mellitus using monoclonal antibodies recognizing protease-sensitive sites. Clin Biochem. 1994;27(2):123–31.CrossRefPubMedGoogle Scholar
  29. 29.
    Matsumoto M, Kawaguchi S, Ishizashi H, Yagi H, Iida J, Sakaki T, et al. Platelets treated with ticlopidine are less reactive to unusually large von Willebrand factor multimers than are those treated with aspirin under high shear stress. Pathophysiol Haemost Thromb. 2005;34(1):35–40.CrossRefPubMedGoogle Scholar
  30. 30.
    Yoshida A, Schmidt GM, Blume KG, Beutler E. Plasma blood group glycosyltransferase activities after bone marrow transplantation. Blood. 1980;55:699–701.PubMedGoogle Scholar
  31. 31.
    Sadler JE. von Willebrand factor assembly and secretion. J Thromb Haemost. 2009;7:24–7.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2018

Authors and Affiliations

  1. 1.Fujita Health University Graduate School of MedicineToyoakeJapan
  2. 2.Department of Pharmacology, School of MedicineFujita Health UniversityToyoakeJapan
  3. 3.Department of Physiology, Faculty of Medical Management and Information Science, School of Health SciencesFujita Health UniversityToyoakeJapan
  4. 4.Department of Biology, Faculty of Rehabilitation, School of Health SciencesFujita Health UniversityToyoakeJapan
  5. 5.Department of Blood Transfusion MedicineNara Medical UniversityKashiharaJapan
  6. 6.Department of Biology, Faculty of Medical Technology, School of Health SciencesFujita Health UniversityToyoakeJapan

Personalised recommendations