Influence of post-transplant mucosal-associated invariant T cell recovery on the development of acute graft-versus-host disease in allogeneic bone marrow transplantation

  • Koji Kawaguchi
  • Katsutsugu Umeda
  • Eitaro Hiejima
  • Atsushi Iwai
  • Masamitsu Mikami
  • Seishiro Nodomi
  • Satoshi Saida
  • Itaru Kato
  • Hidefumi Hiramatsu
  • Takahiro Yasumi
  • Ryuta Nishikomori
  • Tadakazu Kondo
  • Akifumi Takaori-Kondo
  • Toshio Heike
  • Souichi Adachi
Original Article

Abstract

Mucosal-associated invariant T (MAIT) and invariant natural killer T (iNKT) cells are T cell subpopulations that possess innate-like properties. We examined the impact of post-hematopoietic stem cell transplantation (HSCT) MAIT and iNKT cell recovery on the clinical outcomes of 69 patients who underwent allogeneic HSCT at Kyoto University Hospital. Multivariate analyses identified the absolute number of MAIT cells (< 0.48/μL on day 60 post-HSCT) as the sole independent risk factor for grade I–IV and grade II–IV acute graft-versus-host disease (aGVHD) among patients who underwent bone marrow transplantation; no correlation was observed between post-HSCT iNKT cell recovery and the development of aGVHD. Six of the 15 patients in the MAIThigh (≥ 0.48/μL) group developed aGVHD, five within the first 30 days post HSCT. In contrast, 13 of the 15 patients in the MAITlow (< 0.48/μL) group developed aGVHD, seven after day 30 post HSCT. The overall survival of the MAITlow group was slightly shorter than that of the MAIThigh group. Thus, the post-HSCT recovery of MAIT cells is closely related to the development of delayed onset aGVHD and the outcome of post-HSCT, suggesting its utility for identifying a subset of patients that requires more prolonged and/or intense GVHD prophylaxis.

Keywords

MAIT cells iNKT cells Graft-versus-host disease Hematopoietic stem cell transplantation Recovery 

Notes

Acknowledgements

We would like to thank Sato R. and Wakita T. for their help with the flow cytometry analysis.

Author contributions

KK, KU, ATK, and SA designed the research, organized the project, and wrote the manuscript. KK, EH, RS, TW, and HH performed the flow cytometry analysis and analyzed the data. KK, AI, MM, SN, and TK collected data from medical records. IK, KU, TY, TH, and SA assisted with the interpretation of data and provided insightful comments. All authors interpreted the data and reviewed and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors have no competing financial interests to declare.

Supplementary material

12185_2018_2442_MOESM1_ESM.xlsx (13 kb)
Supplementary material 1 (XLSX 12 kb)
12185_2018_2442_MOESM2_ESM.xlsx (13 kb)
Supplementary material 2 (XLSX 12 kb)
12185_2018_2442_MOESM3_ESM.xlsx (13 kb)
Supplementary material 3 (XLSX 13 kb)

References

  1. 1.
    Yamasaki S, Henzan H, Ohno Y, Yamanaka T, Iino T, Itou Y, et al. Influence of transplanted dose of CD56 + cells on development of graft-versus-host disease in patients receiving G-CSF-modified peripheral blood progenitor cells from HLA-identical sibling donors. Bone Marrow Transplant. 2003;32:505–10.CrossRefPubMedGoogle Scholar
  2. 2.
    Shimabukuro-Vornhagen A, Hallek MJ, Strob RF, von Bergwlt-Baildon MS. The role of B cells in the pathogenesis of graft-versus-host disease. Blood. 2009;114:4919–27.CrossRefPubMedGoogle Scholar
  3. 3.
    Magenau JM, Qin X, Tawara I, Rogers CE, Kitko C, Schlough M, et al. Frequency of CD4(+)CD25(hi)FOXP3(+) regulatory T cells has diagnostic and prognostic value as a biomarker for acute graft-versus-host-disease. Biol Blood Marrow Transplant. 2010;16:907–14.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ukena SN, Velaga S, Geffers R, Grosse J, Baron U, Buchholz S, et al. Human regulatory T cells in allogeneic stem cell transplantation. Blood. 2011;118:e82–92.CrossRefPubMedGoogle Scholar
  5. 5.
    Berzins SP, Smyth MJ, Baxter AG. Presumed guilty: natural killer T cell defects and human disease. Nat Rev Immunol. 2011;11:131–42.CrossRefPubMedGoogle Scholar
  6. 6.
    Kronenberg M. Toward and understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol. 2005;23:877–900.CrossRefPubMedGoogle Scholar
  7. 7.
    Reantragoon R, Corbett AJ, Sakala IG, Gherardin NA, Furness JB, Chen Z, et al. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J Exp Med. 2013;210:2305–20.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Treiner E, Durban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature. 2003;422:164–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Gapin L. Where do MAIT cells fit in the family of unconventional T cells? PLoS Biol. 2009;7:e70.CrossRefPubMedGoogle Scholar
  10. 10.
    Dusseaux M, Martin E, Serriari N, Péguillet I, Premel V, Louis D, et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood. 2011;117:1250–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Lepore M, Kalinichenko A, Colone A, Paleja B, Singhal A, Tschumi A, et al. Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRb repertoire. Nat Commun. 2014;5:3866.PubMedGoogle Scholar
  12. 12.
    Guan P, Bassiri H, Patel NP, Nichols KE, Das R. Invariant natural killer T cell in hematopoietic stem cell transplantation: killer choice for natural suppression. Bone Marrow Transplant. 2016;51:629–37.CrossRefPubMedGoogle Scholar
  13. 13.
    Lan F, Zeng D, Higuchi M, Higgins FP, Strober S. Host conditioning with total lymphoid irradiation and antithymocyte globulin prevents graft-versus-host disease: the role of CD1-reactive natural kileer T cells. Biol Blood Marrow Transplant. 2003;9:355–63.CrossRefPubMedGoogle Scholar
  14. 14.
    IIan Y, Ohana M, Pappo O, Margalit M, Lalazar G, Engelhardt D, et al. Alleviation of acute and chronic graft-versus-host disease in a murine model is associated with glucocerebroside-enhanced natural killer T lymphocyte plasticity. Transplantation. 2007;83:458–67.CrossRefGoogle Scholar
  15. 15.
    Schneidawind D, Pierini A, Alvarez M, Pan Y, Baker J, Buechele C, et al. CD4 + invariant natural killer T cells protect from murine GVHD lethality through expansion of donor CD4 + CD25 + FoxP3 + regulatory T cells. Blood. 2014;124:3320–8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chaidos A, Patterson S, Szydlo R, Chaudhry MS, Dazzi F, Kanfer E, et al. Graft invariant natural killer T-cell dose predicts risk of acute graft-versus-host disease in allogeneic hematopoietic stem cell transplantation. Blood. 2012;119:5030–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Rubio MT, Moreira-Teixeira L, Bachy E, Bouillié M, Milpied P, Coman T, et al. Early posttransplantation donor-derived invariant natural killer T-cell recovery predicts the occurrence of acute graft-versus-host disease and overall survival. Blood. 2012;120:2144–54.CrossRefPubMedGoogle Scholar
  18. 18.
    Malard F, Labopin M, Chevallier P, Guillaume T, Duquesne A, Rialland F, et al. Larger number of invariant natural killer T cells in PBSC allografts correlates with improved GVHD-free and progression-free survival. Blood. 2016;127:1828–35.CrossRefPubMedGoogle Scholar
  19. 19.
    Rubio MT, Bouillié M, Bouazza N, Coman T, Trebeden-Nègre H, Gomez A, et al. Pre-transplant donor CD4- invariant NKT cell expansion capacity predicts the occurrence of acute graft-versus-host disease. Leukemia. 2017;31:903–12.CrossRefPubMedGoogle Scholar
  20. 20.
    Hiejima E, Kawai T, Nakase H, Tsuruyama T, Morimoto T, Yasumi T, et al. Reduced numbers and proapoptotic features of mucosal-associated invariant T cells as a characteristic finding in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2015;21:1529–40.CrossRefPubMedGoogle Scholar
  21. 21.
    Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V, et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transplant. 2009;15:1628–33.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al. 1994 consensus conference on acute GVHD grading. Bone Marrow Transplant. 1995;15:825–8.PubMedGoogle Scholar
  23. 23.
    Shulman HM, Sullivan KM, Weiden PL, Mcdonald GB, Striker GE, Sale GE, et al. Chronic graft-versus-host syndrome in man. A long-term clinicopathologic study of 20 Seattle patients. Am J Med. 1980;69:204–17.CrossRefPubMedGoogle Scholar
  24. 24.
    Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Bhattacharyya A, Hanafi LA, Sheih A, Golob JL, Srinivasan S, Boeckh MJ, et al. Graft-derived reconstitution of mucosal-associated invariant T cells after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2018;24:242–51.CrossRefPubMedGoogle Scholar
  26. 26.
    Martin E, Treiner E, Duban L, Guerri L, Laude H, Toly C, et al. Stepwise development of MAIT cells in mouse and human. PLoS Biol. 2009;7:e54.CrossRefPubMedGoogle Scholar
  27. 27.
    Novak J, Dobrovolny J, Novakova L, Kozak T. The decrease in number and change in phenotype of mucosal-associated invariant T cells in the elderly and differences in men and women of reproductive age. Scand J Immunol. 2014;80:271–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Miyazaki Y, Miyake S, Chiba A, Lantz O, Yamamura T. Mucosal-associated invariant T cells regulate Th1 response in multiple sclerosis. Int Immunol. 2011;23:529–35.CrossRefPubMedGoogle Scholar
  29. 29.
    Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature. 2012;491:717–23.PubMedGoogle Scholar
  30. 30.
    Gérart S, Sibéril S, Martin E, Lenoir C, Aguilar C, Picard C, et al. Human iNKT and MAIT cells exhibit a PLZF-dependent proapoptotic propensity that is counterbalanced by XIAP. Blood. 2013;121:614–23.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2018

Authors and Affiliations

  • Koji Kawaguchi
    • 1
  • Katsutsugu Umeda
    • 1
  • Eitaro Hiejima
    • 1
  • Atsushi Iwai
    • 1
  • Masamitsu Mikami
    • 1
  • Seishiro Nodomi
    • 1
  • Satoshi Saida
    • 1
  • Itaru Kato
    • 1
  • Hidefumi Hiramatsu
    • 1
  • Takahiro Yasumi
    • 1
  • Ryuta Nishikomori
    • 1
  • Tadakazu Kondo
    • 2
  • Akifumi Takaori-Kondo
    • 2
  • Toshio Heike
    • 1
  • Souichi Adachi
    • 3
  1. 1.Department of Pediatrics, Graduate School of MedicineKyoto UniversityKyotoJapan
  2. 2.Department of Hematology and Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
  3. 3.Human Health Sciences, Graduate School of MedicineKyoto UniversityKyotoJapan

Personalised recommendations