Advertisement

International Journal of Hematology

, Volume 108, Issue 2, pp 228–231 | Cite as

Atypical erythroblastosis in a patient with Diamond–Blackfan anemia who developed del(20q) myelodysplasia

  • Motoshi Sonoda
  • Masataka Ishimura
  • Yuko Ichimiya
  • Eiko Terashi
  • Katsuhide Eguchi
  • Yasunari Sakai
  • Hidetoshi Takada
  • Asahito Hama
  • Hitoshi Kanno
  • Tsutomu Toki
  • Etsuro Ito
  • Shouichi Ohga
Case Report
  • 142 Downloads

Abstract

Diamond–Blackfan anemia (DBA) is a congenital red cell aplasia arising from ribosomal protein (RP) defects. Affected patients present with neonatal anemia, occasional dysmorphism, and cancer predisposition. An anemic newborn was diagnosed with DBA due to RPL5 mutation (c.473_474del, p.K158SfsX26). Refractory anemia required regular transfusions and iron chelation therapy. Pancytopenia occurred at age 16 years. Bone-marrow studies showed myelodysplasia, erythroblastosis, and clonal evolution of del(20)(q11.2q13.3). Severe anemia required transfusions. Del(20q), including the L3MBTL1 gene, is reported to be relevant to the hematological phenotype of Shwachman–Diamond syndrome. A combined defect of RPL5 and L3MBTL1 may contribute to the aberrant erythropoiesis in the present case.

Keywords

Pure red cell aplasia Myelodysplastic syndrome Ribosomopathy Deletion 20q L3MBTL1 

Notes

Acknowledgements

We thank Prof. Yoshiyuki Takahashi and Emeritus Prof. Seiji Kojima, and the staffs of the central review (Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.) for helpful comments on the BM morphology.

Author contributions

The contributions of each author are as follows. MS, MI, and SO were the principal investigators, taking primary responsibility for the paper. YI, ET, KE, YS and HT performed the clinical management with helpful discussion regarding the completion of the work. AH gave helpful comments on the bone-marrow findings of myelodysplasia. HK, TT, and EI completed the genetic analysis.

Funding

This work was supported in part by Practical Research Project for Rare/Intractable Diseases (15ek0109133) and Grant-in-Aids (15ek0109099h001) from the Japan Agency for Medical Research and Development (AMED) and the Research on Measures for Intractable Diseases Project and Health and Labor Sciences Research grants (Research on Intractable Diseases) from the Ministry of Health, Labor and Welfare.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

References

  1. 1.
    Wegman-Ostrosky T, Savage SA. The genomics of inherited bone marrow failure: from mechanism to the clinic. Br J Haematol. 2017;177:526–42.CrossRefPubMedGoogle Scholar
  2. 2.
    Ikeda F, Yoshida K, Toki T, Uechi T, Ishida S, Nakajima Y, et al. Exome sequencing identified RPS15A as a novel causative gene for Diamond–Blackfan anemia. Haematologica. 2017;102:E93–6.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gripp KW, Curry C, Olney AH, Sandoval C, Fisher J, Chong JX, et al. Diamond–Blackfan anemia with mandibulofacial dystostosis is heterogeneous, including the novel DBA genes TSR2 and RPS28. Am J Med Genet Part A. 2014;164:2240–9.CrossRefGoogle Scholar
  4. 4.
    Sankaran VG, Ghazvinian R, Do R, Thiru P, Vergilio JA, Beggs AH, et al. Exome sequencing identifies GATA1 mutations resulting in Diamond–Blackfan anemia. J Clin Invest. 2012;122:2439–43.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Vlachos A, Ball S, Dahl N, Alter BP, Sheth S, Ramenghi U, et al. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol. 2008;142:859–76.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Vlachos A, Rosenberg PS, Atsidaftos E, Alter BP, Lipton JM. Incidence of neoplasia in Diamond Blackfan anemia: a report from the Diamond Blackfan Anemia Registry. Blood. 2012;119:3815–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dalle JH, de Latour RP. Allogeneic hematopoietic stem cell transplantation for inherited bone marrow failure syndromes. Int J Hematol. 2016;103:373–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Gazda HT, Sheen MR, Vlachos A, Choesmel V, O’Donohue MF, Schneider H, et al. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond–Blackfan anemia patients. Am J Hum Gene. 2008;83:769–80.CrossRefGoogle Scholar
  9. 9.
    Ruggero D, Shimamura A. Marrow failure: a window into ribosome biology. Blood. 2014;124:2784–92.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bench AJ, Nacheva EP, Hood TL, Holden JL, French L, Swanton S, et al. Chromosome 20 deletions in myeloid malignancies: reduction of the common deleted region, generation of a PAC/BAC contig and identification of candidate genes. Oncogene. 2000;19:3902–13.CrossRefPubMedGoogle Scholar
  11. 11.
    Perna F, Gurvich N, Hoya-Arias R, Abdel-Wahab O, Levine RL, Asai T, et al. Depletion of L3MBTL1 promotes the erythroid differentiation of human hematopoietic progenitor cells: possible role in 20q(−) polycythemia vera. Blood. 2010;116:2812–21.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Braun T, de Botton S, Taksin AL, Park S, Beyne-Rauzy O, Coiteux V, et al. Characteristics and outcome of myelodysplastic syndromes (MDS) with isolated 20q deletion: A report on 62 cases. Leuk Res. 2011;35:863–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Alanio-Brechot C, Schischmanoff PO, Feneant-Thibault M, Cynober T, Tchernia G, Delaunay J, et al. Association between myeloid malignancies and acquired deficit in protein 4.1R: A retrospective analysis of six patients. Am J Hematol. 2008;83:275–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Babushok DV, Bessler M. Genetic predisposition syndromes: When should they be considered in the work-up of MDS? Best Pract Res Clin Haematol. 2015;28:55–68.CrossRefPubMedGoogle Scholar
  15. 15.
    Nacci L, Valli R, Pinto RM, Zecca M, Cipolli M, Morini J, et al. Parental origin of the deletion del(20q) in Shwachman–Diamond patients and loss of the paternally derived allele of the imprinted L3MBTL1 gene. Genes Chromosomes Cancer. 2017;56:51–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Goudarzi KM, Lindstrom MS. Role of ribosomal protein mutations in tumor development (review). Int J Oncol. 2016;48:1313–24.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fancello L, Kampen KR, Hofman IJF, Verbeeck J, De Keersmaecker K. The ribosomal protein gene RPL5 is a haploinsufficient tumor suppressor in multiple cancer types. Oncotarget. 2017;8:14462–78.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lipton JM, Atsidaftos E, Zyskind I, Vlachos A. Improving clinical care and elucidating the pathophysiology of diamond Blackfan anemia: an update from the Diamond Blackfan anemia registry. Pediatr Blood Cancer. 2006;46:558–64.CrossRefPubMedGoogle Scholar
  19. 19.
    Roy V, Perez WS, Eapen M, Marsh JC, Pasquini M, Pasquini R, et al. Bone marrow transplantation for Diamond–Blackfan anemia. Biol Blood Marrow Transpl. 2005;11:600–8.CrossRefGoogle Scholar
  20. 20.
    Ohga S, Mugishima H, Ohara A, Kojima S, Fujisawa K, Yagi K, et al. Diamond–Blackfan anemia in Japan: clinical outcomes of prednisolone therapy and hematopoietic stem cell transplantation. Int J Hematol. 2004;79:22–30.CrossRefPubMedGoogle Scholar
  21. 21.
    Mugishima H, Ohga S, Ohara A, Kojima S, Fujisawa K, Tsukimoto I. Hematopoietic stem cell transplantation for Diamond–Blackfan anemia: a report from the Aplastic Anemia Committee of the Japanese Society of Pediatric Hematology. Pediatr Transpl. 2007;11:601–7.CrossRefGoogle Scholar
  22. 22.
    Fagioli F, Quarello P, Zecca M, Lanino E, Corti P, Favre C, et al. Haematopoietic stem cell transplantation for Diamond Blackfan anaemia: a report from the Italian Association of Paediatric Haematology and Oncology Registry. Br J Haematol. 2014;165:673–81.CrossRefPubMedGoogle Scholar
  23. 23.
    Roggero S, Quarello P, Vinciguerra T, Longo F, Piga A, Ramenghi U. Severe iron overload in Blackfan–Diamond anemia: a case–control study. Am J Hematol. 2009;84:729–32.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2018

Authors and Affiliations

  • Motoshi Sonoda
    • 1
  • Masataka Ishimura
    • 1
  • Yuko Ichimiya
    • 1
  • Eiko Terashi
    • 1
  • Katsuhide Eguchi
    • 1
  • Yasunari Sakai
    • 1
  • Hidetoshi Takada
    • 1
    • 2
  • Asahito Hama
    • 3
  • Hitoshi Kanno
    • 4
  • Tsutomu Toki
    • 5
  • Etsuro Ito
    • 5
  • Shouichi Ohga
    • 1
  1. 1.Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  2. 2.Department of Perinatal and Pediatric Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  3. 3.Department of PediatricsNagoya University Graduate School of MedicineNagoyaJapan
  4. 4.Department of Transfusion Medicine and Cell ProcessingTokyo Women’s Medical UniversityTokyoJapan
  5. 5.Department of PediatricsHirosaki University Graduate School of MedicineHirosakiJapan

Personalised recommendations